Skip to main content
Log in

Supramolecular Assembly of Planar Systems from Modular Molecules with a Given Hydrophilic–Lipophilic Balance: Film Sensors with an Anthraquinone Signal Group

  • Molecular and Supramolecular Structures at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work presents an original approach to obtaining highly sensitive ultrathin film sensors that allows molecular design of surface–active modular molecules by completing a signal anthraquinone block with hydrophobic radicals and polar receptor groups, with their number and size provided in accordance with the sensor type. An important advantage of the suggested approach is that it not only allows the functioning of sensors in the aqueous medium, but also their manufacturing (supramolecular assembly). The key regularity of ligands of the suggested series is selectivity with respect to mercury and copper cations. Application of amphipilic ligands in film liquid (Langmuir monolayers) and solid–state (Langmuir–Blodgett films) sensors allowed developing optical sensors for mercury and copper cations with the detection limit, as dependent on the sensor type, varying from several to hundredths of ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, S., Singh, J., Li, H., and Banerjee, I.A., Biosensor Nanomaterials, Hoboken, NJ: John Wiley and Sons, 2011.

    Book  Google Scholar 

  2. Gumpu, M.B., Sethuraman, S., Krishnan, U.M., and Rayappan, J.B.B., Sens. Actuators, B, 2015, vol. 213, pp. 515–533.

    Article  Google Scholar 

  3. Li, M., Gou, H., Al-Ogaidi, I., and Wu, N., ACS Sustainable Chem. Eng., 2013, vol. 1, no. 7, pp. 713–723.

    Article  Google Scholar 

  4. Mahbub, K.R., Krishnan, K., Naidu, R., Andrews, S., and Megharaj, M., Ecol. Indic., 2017, vol. 74, pp. 451–462.

    Article  Google Scholar 

  5. Schaefer, J.K., Szczuka, A., and Morel, F.M.M., Environ. Sci. Technol., 2014, vol. 48, no. 5, pp. 3007–3013.

    Article  Google Scholar 

  6. Gribble, M.O., Karimi, R., Feingold, B.J., Nyland, J.F., O’Hara, T.M., Gladyshev, M.I., and Chen, C.Y., J. Mar. Biol. Assoc. U. K., 2016, vol. 96, pp. 43–59.

    Article  Google Scholar 

  7. Zadmard, R., Akbari-Moghaddam, P., and Darvishi, S., Supramol. Chem., 2017, vol. 29, no. 1, pp. 17–23.

    Article  Google Scholar 

  8. Yu, J.G., Yue, B.Y., Wu, X.W., Liu, Q., Jiao, F.P., Jiang, X.Y., and Chen, X.Q., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 6, pp. 5056–5076.

    Article  Google Scholar 

  9. Hordyjewska, A., Popiolek, L., and Kocot, J., Biometals, 2014, vol. 27, no. 4, pp. 611–621.

    Article  Google Scholar 

  10. Scheiber, I.F., Mercer, J.F., and Dringen, R., Prog. Neurobiol., 2014, vol. 116, pp. 33–57.

    Article  Google Scholar 

  11. Ahuja, A., Dev, K., Tanwar, R.S., Selwal, K.K., and Tyagi, P.K., J. Trace Elem. Med. Biol., 2015, vol. 29, pp. 11–23.

    Article  Google Scholar 

  12. Wu, J., Ricker, M., and Muench, J., J. Am. Board Fam. Med., 2006, vol. 19, no. 2, pp. 191–194.

    Article  Google Scholar 

  13. Griffin, W.C., J. Soc. Cosmet. Chem., 1946, vol. 1, pp. 311–326.

    Google Scholar 

  14. Ranyuk, E., Uglov, A., Meyer, M., Bessmertnykh-Lemeune, A., Denat, F., Averin, A., Beletskaya, I., and Guilard, R., Dalton Trans., 2011, vol. 40, no. 40, pp. 10491–10502.

    Article  Google Scholar 

  15. Arslanov, V., Ermakova, E., Michalak, J., Bessmertnykh-Lemeune, A., Meyer, M., Raitman, O., Vysotskij, V., Guilard, R., and Tsivadze, A., Colloids Surf., A, 2015, vol. 483, pp. 193–203.

    Article  Google Scholar 

  16. Fukuda, K., Nakahara, H., and Kato, T., J. Colloid Interface Sci., 1976, vol. 54, no. 3, pp. 430–438.

    Article  Google Scholar 

  17. O’Hanlo, D. and Forster, R.J., Langmuir, 2000, vol. 16, pp. 702–707.

    Article  Google Scholar 

  18. Nakahara, H., Stud. Interface Sci., 1996, vol. 4, pp. 71–108.

    Article  Google Scholar 

  19. Selector, S., Fedorova, O., Lukovskaya, E., Anisimov, A., Fedorov, Y., Tarasova, N., Raitman, O., Fages, F., and Arslanov, V., J. Phys. Chem. B, 2012, vol. 116, no. 5, pp. 1482–1490.

    Article  Google Scholar 

  20. Ranyuk, E., Ermakova, E.V., Bovigny, L., Meyer, M., Bessmertnykh-Lemeune, A., Guilard, R., Rousselin, Y., Tsivadze, A.Y., and Arslanov, V.V., New J. Chem., 2014, vol. 38, no. 1, pp. 317–329.

    Article  Google Scholar 

  21. Selektor, S., Shokurov, A., Raitman, O., Sheinina, L., Arslanov, V., Birin, K., Gorbunova, Y.G., and Tsivadze, A.Y., Colloid J., 2012, vol. 74, no. 3, pp. 334–345.

    Article  Google Scholar 

  22. Ermakova, E., Enakieva, Yu., Zvyagina, A., Gorbunova, Yu., Kalinina, M., and Arslanov, V., Macroheterocycles, 2016, vol. 9, pp. 378–386.

    Article  Google Scholar 

  23. Ermakova, E., Meshkov, I., Enakieva, Yu., Zvyagina, A., Ezhov, A., Mikhaylov, A., Gorbunova, Yu., Kalinina, M., and Arslanov, V., Surf. Sci., 2017, vol. 660, pp. 39–46.

    Article  Google Scholar 

  24. Zotova, T., Arslanov, V., and Gagina, I., Thin Solid Films, 1998, vol. 326, pp. 223–226.

    Article  Google Scholar 

  25. Kalinina, M.A., Arslanov, V.V., Tsar’kova, L.A., and Rakhnyanskaya, A.A., Colloid J., 2000, vol. 62, no. 5, pp. 545–549.

    Google Scholar 

  26. Kalinina, M.A., Arslanov, V.V., Zheludeva, S.I., and Tereschenko, E.Y., Thin Solid Films, 2005, vol. 472, no. 1, pp. 232–237.

    Article  Google Scholar 

  27. Wang, F., Wei, X., Wang, C., Zhang, S., and Ye, B., Talanta, 2010, vol. 80, no. 3, pp. 1198–1204.

    Article  Google Scholar 

  28. Ludwig, R., Fresenius’ J. Anal. Chem., 2000, vol. 367, no. 2, pp. 103–128.

    Article  Google Scholar 

  29. Riegler, H. and Spratte, K., Thin Solid Films, 1992, vol. 210, pp. 9–12.

    Article  Google Scholar 

  30. Raudino, A. and Pignataro, B., J. Phys. Chem. B, 2007, vol. 111, no. 31, pp. 9189–9192.

    Article  Google Scholar 

  31. Elenskiy, A.A., Turygin, D.S., Arslanov, V.V., and Kalinina, M.A., Nanotechnol. Russ., 2009, vol. 4, pp. 275–280.

    Article  Google Scholar 

  32. Arslanov, V.V., Sheinina, L.S., and Kalinina, M.A., Prot. Met., 2008, vol. 44, no. 1, pp. 1–21.

    Article  Google Scholar 

  33. Watson, S.M.D., Coleman, K.S., and Chakraborty, A.K., ACS Nano, 2008, vol. 2, no. 4, pp. 643–650.

    Article  Google Scholar 

  34. Kalinina, M.A., Raitman, O.A., Turygin, D.S., Selektor, S.L., Golubev, N.V., and Arslanov, V.V., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 8, pp. 1334–1342.

    Article  Google Scholar 

  35. Zhavnerko, G. and Marletta, G., Mater. Sci. Eng., B, 2010, vol. 169, pp. 43–48.

    Article  Google Scholar 

  36. Xu, G., Bao, Z., and Groves, J.T., Langmuir, 2000, vol. 16, no. 4, pp. 1834–1841.

    Article  Google Scholar 

  37. Cao, Y., Wei, Z., Liu, S., Gan, L., Guo, X., Xu, W., Steigerwald, M.L., and Liu, Z., Angew. Chem., 2010, vol. 122, no. 36, pp. 6463–6467.

    Article  Google Scholar 

  38. Kim, J., Pure Appl. Chem., 2002, vol. 74, no. 11, pp. 2031–2044.

    Article  Google Scholar 

  39. Prabhakaran, D., Yuehong, Ma., Nanjo, H., and Matsunaga, H., Anal. Chem., 2007, vol. 79, pp. 4056–4065.

    Article  Google Scholar 

  40. Prabhakaran, D., Nanjo, H., and Matsunaga, H., Anal. Chim. Acta, 2007, vol. 601, pp. 108–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Arslanov.

Additional information

Original Russian Text © E.V. Ermakova, A.G. Bessmertnykh-Lemeune, M. Meyer, L.V. Ermakova, A.Yu. Tsivadze, V.V. Arslanov, 2018, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2018, Vol. 54, No. 1, pp. 9–21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, E.V., Bessmertnykh-Lemeune, A.G., Meyer, M. et al. Supramolecular Assembly of Planar Systems from Modular Molecules with a Given Hydrophilic–Lipophilic Balance: Film Sensors with an Anthraquinone Signal Group. Prot Met Phys Chem Surf 54, 6–18 (2018). https://doi.org/10.1134/S2070205118010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118010057

Navigation