Skip to main content
Log in

Synthesis of zeolite/magnetite nanocomposite and a fast experimental determination of its specific surface area

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In the present work, the clinoptilolite was magnetized by magnetite nano-powder synthesized by chemical co-precipitation route. The clinoptilolite/magnetite nanocomposites were prepared with different weight ratios of 7 : 1, 5 : 1, 3 : 1 and 1 : 1 using FeCl3 · 6H2O and FeCl2 · 4H2O in an aqueous phase under the ambient condition. The nanocomposites were characterized by the X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and the vibrating sample magnetometer techniques. The results of characterization suggest that the main magnetic phase present in the nanocomposite is magnetite nanoparticle with an average diameter of 18–23 nm and the saturation magnetization of 74.29 emu g–1. The specific surface area was calculated by a BET single-point method as a rapid and accurate way which can lie almost anywhere on the isotherm. The values of the specific surface area obtained by the BET single-point method were in a good agreement with the BET multiple-point method. It was found that the BET single-point method is faster and simpler than the BET multiple-point method for routine applications. Also, increasing Fe3O4 content caused an increase in the specific surface area of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zihlif, A., Elimat, Z., and Ragosta, G., J. Compos. Mater., 2011, vol. 45, p. 1209.

    Article  Google Scholar 

  2. Faghihian, H., Moayed, M., Firooz, A., and Iravani, M., C. R. Chim., 2014, vol. 17, p. 108.

    Article  Google Scholar 

  3. Kowalczyk, P., Sprynskyy, M., Terzyk, A., et al., J. Colloid Interface Sci., 2006, vol. 297, p. 77.

    Article  Google Scholar 

  4. Pera-Titus, M., J. Phys. Chem. C, 2011, vol. 115, p. 3346.

    Article  Google Scholar 

  5. Babel, S. and Kurniawan, T.A., J. Hazard. Mater., 2003, vol. 97, p. 219

    Article  Google Scholar 

  6. Liu, M., Xi, B.-d., Hou, L.-a., and Yu, S., J. Mater. Chem. A, 2013, vol. 1, p. 12617.

    Article  Google Scholar 

  7. Mansouri, N., Rikhtegar, N., Panahi, H.A., et al., Environ. Prot. Eng., 2013, vol. 39, p. 139.

    Google Scholar 

  8. Dinu, M.V. and Dragan, E.S., Chem. Eng. J., 2010, vol. 160, p. 157.

    Article  Google Scholar 

  9. Bourlinos, A., Zboril, R., and Petridis, D., Microporous Mesoporous Mater., 2003, vol. 58, p. 155

    Article  Google Scholar 

  10. Nah, I.W., Hwang, K.-Y., and Shul, Y.-G., Powder Technol., 2007, vol. 177, p. 99.

    Article  Google Scholar 

  11. Aono, H., Tamura, K., Johan, E., et al., J. Am. Ceram. Soc., 2013, vol. 96, p. 3218.

    Article  Google Scholar 

  12. Gnanaprakash, G., Mahadevan, S., Jayakuma, T., et al., Mater. Chem. Phys., 2007, vol. 103, p. 168.

    Article  Google Scholar 

  13. Meng, J., Yang, G., Yan, L., and Wang, X., Dyes Pigm., 2005, vol. 66, p. 109.

    Article  Google Scholar 

  14. Wu, J.H., Ko, S.P., Liu, H.L., et al., Colloids Surf., A, 2008, vol. 313, p. 268.

    Article  Google Scholar 

  15. Panneerselvam, P., Morad, N., and Tan, K.A., J. Hazard. Mater., 2011, vol. 186, p. 160

    Article  Google Scholar 

  16. Mahdavian, A.R. and Mirrahimi, M.A.-S., Chem. Eng. J., 2010, vol. 159, p. 264

    Article  Google Scholar 

  17. Faraji, M., Yamini, Y., and Rezaee, M., J. Iran. Chem. Soc., 2010, vol. 7, p. 1

    Article  Google Scholar 

  18. Huang, S.-H. and Chen, D.-H., J. Hazard. Mater., 2009, vol. 163, p. 174

    Article  Google Scholar 

  19. Unsoy, G., Yalcin, S., Khodadust, R., et al., J. Nanopart. Res., 2012, vol. 14, p. 1

    Article  Google Scholar 

  20. Wu, W., He, Q., and Jiang, C., ChemInform, 2009, vol. 40, p. 1

    Google Scholar 

  21. Hao, Y.-M., Man, C., and Hu, Z.-B., J. Hazard. Mater., 2010, vol. 184, p. 392.

    Article  Google Scholar 

  22. Oliveira, L.C., Rios, R.V., Fabris, J.D., et al., Appl. Clay Sci., 2003, vol. 22, p. 169.

    Article  Google Scholar 

  23. Oliveira, L.C., Rios, R.V., Fabris, J.D., et al., Carbon, 2002, vol. 40, p. 2177.

    Article  Google Scholar 

  24. Oliveira, L.C., Petkowicz, D.I., Smaniotto, A., and Pergher, S.B., Water Res., 2004, vol. 38, p. 3699.

    Article  Google Scholar 

  25. Orolínová, Z. and Mockovčiaková, A., Mater. Chem. Phys., 2009, vol. 114, p. 956.

    Article  Google Scholar 

  26. Petcharoen, K. and Sirivat, A., Mater. Sci. Eng., B, 2012, vol. 177, p. 421.

    Article  Google Scholar 

  27. Ozkaya, T., Toprak, M.S., Baykal, A., et al., J. Alloys Compd., 2009, vol. 472, p. 18.

    Article  Google Scholar 

  28. Doula, M., Ioannou, A., and Dimirkou, A., J. Colloid Interface Sci., 2002, vol. 245, p. 237.

    Article  Google Scholar 

  29. Joy, A., Vacuum, 1953, vol. 3, p. 254.

    Article  Google Scholar 

  30. Thomas, J. and Damberger, H.H., Ill. State Geol. Surv., Circ., 1976, vol. 493, p. 38.

    Google Scholar 

  31. Schull, C., J. Am. Chem. Soc., 1948, vol. 70, p. 1405.

    Article  Google Scholar 

  32. Walton, K.S. and Snurr, R.Q., J. Am. Chem. Soc., 2007, vol. 129, p. 8552.

    Article  Google Scholar 

  33. Cerofolini, G. and Meda, L., Surf. Sci., 1998, vol. 416, p. 403.

    Article  Google Scholar 

  34. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  Google Scholar 

  35. Fagerlund, G., Mater. Constr. (Paris), 1973, vol. 6, p. 239.

    Article  Google Scholar 

  36. Innes, W., Anal. Chem., 1951, vol. 23, p. 759.

    Article  Google Scholar 

  37. Haul, R. and Dumbgen, G., Chem. Ing. Tech., 1960, vol. 32, p. 349.

    Article  Google Scholar 

  38. Nelsen, F. and Eggertsen, F., Anal. Chem., 1958, vol. 30, p. 1387.

    Article  Google Scholar 

  39. Masuda, H., Higashitani, K., and Yoshida, H., Powder Technology Handbook, Boca Raton: CRC Press, 2006.

    Book  Google Scholar 

  40. Masuda, H., Higashitani, K., and Yoshida, H., Powder Technology: Fundamentals of Particles, Powder Beds and Particle Generation, Boca Raton: CRC Press, 2007

    Google Scholar 

  41. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer Science & Business Media, 2012.

    Google Scholar 

  42. Dollimore, D. and Spooner, P., J. Appl. Chem. Biotechnol., 1974, vol. 24, p. 35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Ghoreishi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanbakht, V., Ghoreishi, S.M., Habibi, N. et al. Synthesis of zeolite/magnetite nanocomposite and a fast experimental determination of its specific surface area. Prot Met Phys Chem Surf 53, 693–702 (2017). https://doi.org/10.1134/S2070205117040086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040086

Navigation