Skip to main content
Log in

Key Intermediates in the Hydrogenation of Carboxylic Acids on the Pt–ReOx/TiO2 Catalyst

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The reactivity of adsorbed acetic acid forms on the Pt–ReOx/TiO2 catalyst has been studied. Three adsorbed acetic acid forms were identified by in situ Fourier IR spectroscopy at 200°С: bidentate acetates and two forms of molecularly adsorbed acetic acid. The consumption rate constants two forms of molecularly adsorbed acetic acid (0.02 and 0.029 s–1, respectively) were found to be close in magnitude to the catalytic reaction constant rate (0.034 s–1) measured at 200°С. It was concluded that these two forms of molecularly adsorbed acetic acid are key intermediates in acetic acid hydrogenation on the Pt–ReOx/TiO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pritchard, J., Filonenko, G.A., van Putten, R., Hensen, E.J.M., and Pidko, E.A., Chem. Soc. Rev., 2015, vol. 44, no. 11, pp. 3808–3833. https://doi.org/10.1039/C5CS00038F

    Article  CAS  Google Scholar 

  2. Castiglioni, G.L., Ferrari, M., Guercio, A., Vaccari, A., Lancia, R., and Fumagalli, C., Catal. Today, 1996, vol. 27, pp. 181–186. https://doi.org/10.1016/0920-5861(95)00209-X

    Article  CAS  Google Scholar 

  3. US Patent 6355848 B1, 2002.

  4. Clayden, J., Greeves, N., Warren, S., and Wothers, P., Organic Chemistry, New York: Oxford University Press, 2000.

    Google Scholar 

  5. Adkins, H. and Connor, R., J. Am. Chem. Soc., 1931, vol. 53, pp. 1091–1095.

    Article  CAS  Google Scholar 

  6. Nishimura, S., in Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, New York: Wiley, 2001, ch. 10.3, pp. 416–423.

    Google Scholar 

  7. Suknev, V., Zaikovskii, V., Kaichev, E., Paukshtis, E., and Sadovskaya, B., Bal’zhinimaev, J. Energy Chem., 2015, vol. 24, no. 5, pp. 646–654. https://doi.org/10.1016/j.jechem.2015.09.003

    Article  Google Scholar 

  8. Takeda, M., Tamura, Y., Nakagawa, K., and Okumura, K., Tomishige, ACS Catal., 2015, vol. 5, no. 11, pp. 7034–7047. https://doi.org/10.1021/acscatal.5b01054

    Article  CAS  Google Scholar 

  9. Ly, B.-K., Tapin, B., Aouine, M., Delichere, P., Epron, F., Pinel, C., Especel, C., and Besson, M., ChemCatChem, 2015, vol. 7, no. 14, pp. 2161–2178. https://doi.org/10.1002/cctc.201500197

    Article  CAS  Google Scholar 

  10. Bal’zhinimaev, B.S., Paukshtis, E.A., Suknev, A.P., and Makolkin, N.V., J. Energy Chem., 2018, vol. 27, no. 3, pp. 903–912. https://doi.org/10.1016/j.jechem.2017.07.018

    Article  Google Scholar 

  11. Balzhinimaev, B., Suknev, A., Paukshtis, E., and Batueva, I., Catal. Green Chem. Eng., 2018, vol. 1, no. 1, pp. 27–42. https://doi.org/10.1615/.2017021077

    Article  CAS  Google Scholar 

  12. Liu, L., Meira, D.M., Arenal, R., Concepcion, P., Puga, A.V., and Corma, A., ACS Catal., 2019, vol. 9, no. 12, pp. 10626–10639. https://doi.org/10.1021/acscatal.9b04214

    Article  CAS  Google Scholar 

  13. Zhang, Y., Fu, D., Xu, X., Sheng, Y., Xu, J., and Han, Y., Curr. Opin. Chem. Eng., 2016, vol. 12, pp. 1–7. https://doi.org/10.1016/j.coche.2016.01.004

    Article  CAS  Google Scholar 

  14. Dumesic, J.A., Huber, G.W., and Boudart, M., in Handbook of Heterogeneous Catalysis, 2008, ch. 1.1., pp. 1–15. https://doi.org/10.1002/9783527610044.hetcat0001

  15. Zhou, M., Zhang, H., Ma, H., and Ying, W., Fuel, 2017, vol. 203, pp. 774–780. https://doi.org/10.1016/j.fuel.2017.03.063

    Article  CAS  Google Scholar 

  16. Manyar, H.G., Paun, C., Pilus, R., Rooney, D.W., Tompson, J.M., and Hardacre, C., Chem. Commun., 2010, vol. 46, no. 34, pp. 6279–6289. https://doi.org/10.1039/C0CC01365J

    Article  CAS  Google Scholar 

  17. Chen, L., Zhu, Y., Zheng, H., Zhang, C., and Li, Y., Appl. Catal., A, 2012, vols. 411–412, pp. 95–104. https://doi.org/10.1016/j.apcata.2011.10.026

  18. Dub, P.A., and Ikariya, T., ACS Catal., 2012, vol. 2, no. 8, pp. 1718–1741. https://doi.org/10.1021/cs300341g

    Article  CAS  Google Scholar 

  19. Makolkin, N.V., Kim, H.U., Paukshtis, E.A., Jae, J., and Bal’zhinimaev, B.S., Catal. Ind., 2020, vol. 12, no. 4, pp. 316–322. https://doi.org/10.1134/s207005042004011x

    Article  Google Scholar 

  20. Ly, B.K., Tapin, B., Epron, F., Pinel, C., Especel, C., and Besson, M., Catal. Today, 2019, vol. 355, pp. 75–83. https://doi.org/10.1016/j.cattod.2019.03.024

    Article  CAS  Google Scholar 

  21. Steinruck, H.-P., Pesty, F., Zhang, L., and Madey, T.E., Phys. Rev. B, 1995, vol. 51, no. 4, pp. 2427–2439. https://doi.org/10.1103/PhysRevB.51.2427

    Article  CAS  Google Scholar 

  22. Reiche, R., Oswald, S., and Wetzig, K., Appl. Surf. Sci., 2001, vol. 179, nos. 1–4, pp. 316–323. https://doi.org/10.1016/S0169-4332(01)00300-2

  23. Chan, A.S.Y., Chen, W., Wang, H., Rowe, J.E., and Madey, T.E., J. Phys. Chem. B, 2004, vol. 108, no. 38, pp. 14643–14651. https://doi.org/10.1021/jp040168x

    Article  CAS  Google Scholar 

  24. Wang, H., Chan, A.S.Y., Chen, W., Kaghazchi, P., Jacob, T., and Madey, T.E., ACS Nano, 2007, vol. 1, no. 5, pp. 449–455. https://doi.org/10.1021/nn700238r

    Article  CAS  Google Scholar 

  25. Dong, X., Lei, J., Chen, Y., Jiang, H., and Zhang, M., Appl. Catal., B, 2019, vol. 244, pp. 448–458. https://doi.org/10.1016/j.apcatb.2018.11.062

    Article  CAS  Google Scholar 

  26. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, pp. 232–233.

    Google Scholar 

  27. Liao, L.-F., Lien, C.-F., and Lin, J.-L., Phys. Chem. Chem. Phys., 2001, vol. 3, no. 17, pp. 3831–3837. https://doi.org/10.1039/B103419G

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Saraev for performing the XPS studies of the catalyst.

Funding

The reported study was funded by the Russian Foundation for Basic Research and the National Research Foundation of Korea according to research project no. 19-53-51002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Makolkin, E. A. Paukshtis, V. V. Kaichev, A. P. Suknev, H. U. Kim or J. Jae.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makolkin, N.V., Paukshtis, E.A., Kaichev, V.V. et al. Key Intermediates in the Hydrogenation of Carboxylic Acids on the Pt–ReOx/TiO2 Catalyst. Catal. Ind. 14, 336–342 (2022). https://doi.org/10.1134/S2070050422040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422040079

Keywords:

Navigation