Skip to main content
Log in

New methods for the preparation of high-octane components from catalytic cracking olefins

  • Catalysis in Petroleum Refining Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A new method has been suggested for the preparation of high-octane components from the butane–butylene fraction (BBF) in two stages. At the first stage, the BBF olefins are oxidized with N2O into carbonyl compounds with high selectivity without forming the products of deep oxidation and water. The process occurs in the gas phase in a flow reactor without using a catalyst at a temperature of 400°C and a pressure of 2 MPa with high conversion of both olefins and nitrous oxide. The blending octane number of the oxidation product is 118–133 (RON) and 99–104 (MON). At the second stage, the mixture of carbonyl compounds is hydrogenated with hydrogen in the presence of the Ni/Al2O3 catalyst. The hydrogenation occurs at 150–160°C in a flow reactor in the gas phase. The aldehydes are completely transformed into alcohols, while the ketones can remain in the product under certain conditions. The blending octane number of the hydrogenation product is 111–112 (RON) and 95–96 (MON), which is smaller than for the BBF oxidation product, but larger than for the alkylate obtained in the course of conventional butene alkylation with isobutane (RON is 95–97 and MON is 93–95). Synthesis of high-octane components by this procedure can be useful in practice, especially in productions with huge release of nitrous oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kapustin, V.M., Karpov, S.A., and Tsarev, A.V., Oksigenaty v avtomobil’nykh benzinakh (Oxygenates in Automobile Gasolines), Moscow: KolosS, 2011.

    Google Scholar 

  2. Mirzoev, V. and Pishchuk, E., Probl. Mestnogo Samoupravleniya, 2010, no. 41. http://www.samoupravlenie.ru/41-10.php. Cited July 09, 2017.

    Google Scholar 

  3. Badia, J.H., Fité, C., Bringué, R., Ramírez, E., and Cunill, F., Appl. Catal., A, 2013, vol. 468, pp. 384–394.

    Article  CAS  Google Scholar 

  4. Jaime-Leal, J.E., Bonilla-Petriciolet, A., Segovia-Hernández, J.G., Hernández, S., and Hernández-Escoto, H., Chem. Eng. Process., 2013, vol. 72, pp. 31–41.

    Article  CAS  Google Scholar 

  5. Hazari, N., Iglesia, E., Labinger, J.A., and Simonetti, D.A., Acc. Chem. Res., 2012, vol. 45, no. 4, pp. 653–662.

    Article  CAS  Google Scholar 

  6. Simonetti, D.A., Ahn, J.H., and Iglesia, E., J. Catal., 2011, vol. 277, no. 2, pp. 173–195.

    Article  CAS  Google Scholar 

  7. Maksimov, A.L., Nekhaev, A.I., Ramazanov, D.N., Arinicheva, Yu.A., Dzyubenko, A.A., and Khadzhiev, S.N., Pet. Chem., 2011, vol. 51, no. 1, pp. 61–69.

    Article  CAS  Google Scholar 

  8. Hamadi, A.S., Tikrit J. Eng. Sci., 2010, vol. 17, no. 2, pp. 22–35.

    Google Scholar 

  9. Taraban’ko, V.E., Chernyak, M.Yu., Morozov, A.A., Kaigorodov, K.L., Bezborodov, Yu.N., Orlovskaya, N.F., and Nadeikin, I.V., Zh. Sib. Fed. Univ., Khim., 2014, vol. 7, no. 1, pp. 31–35.

    Google Scholar 

  10. Alotaibi, M.A., Kozhevnikova, E.F., and Kozhevnikov, I.V., J. Catal., vol. 293, pp. 141–144.

  11. Bercaw, J.E., Hazari, N., Labinger, J.A., Scott, V.J., and Sunley, G.J., J. Am. Chem. Soc., 2008, vol. 130, no. 39, pp. 11988–11995.

    Article  CAS  Google Scholar 

  12. Panov G.I., Dubkov K.A., and Kharitonov A.S. in Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization, Mizuno, N., Ed., Weinheim: Wiley-VCH, 2009, pp. 217–252.

    Book  Google Scholar 

  13. Starokon, E.V., Dubkov, K.A., Babushkin, D.E., Parmon, V.N., and Panov, G.I., Adv. Synth. Catal., 2004, vol. 346, nos. 2–3, pp. 268–274.

    Article  CAS  Google Scholar 

  14. Hermans, I., Moens, B., Peeters, J., Jacobs, P., and Sels, B., Phys. Chem. Chem. Phys., 2007, vol. 9, no. 31, pp. 4269–4274.

    Article  CAS  Google Scholar 

  15. Hermans, I., Janssen, K., Moens, B., Philippaerts, A., Van Berlo, B., Peeters, J., Jacobs, P.A., and Sels, B.F., Adv. Synth. Catal., 2007, vol. 349, no. 10, pp. 1604–1608.

    Article  CAS  Google Scholar 

  16. Newman, S.G., Lee, K., Cai, J., Yang, L., Green, W.H., and Jensen, K., Ind. Eng. Chem. Res., 2015, vol. 54, no. 16, pp. 4166–4173.

    Article  CAS  Google Scholar 

  17. BASF starts up a new production facility for intermediates. http://www.chemicalonline.com/article.mvc/BASFStarts-Up-A-New-Production-Facility-For-0001. Cited July 10, 2017.

  18. Uriarte, A.K., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 743–748.

    Article  Google Scholar 

  19. Evonik Official Website. http://corporate.evonik.com/ en/products/search-products/pages/product-details.aspx?pid=60222&pfsearch=o&pfcmd=letter. Cited July 10, 2017.

  20. Su, M.-D., Liao, H.-Y., Chung, W.-S., and Chu, S.-Y., J. Org. Chem., 1999, vol. 64, no. 18, pp. 6710–6716.

    Article  CAS  Google Scholar 

  21. Avdeev, V.I., Ruzankin, S.Ph., and Zhidomirov, G.M., Chem. Commun., 2003, vol. 9, no. 1, pp. 42–43.

    Article  Google Scholar 

  22. Avdeev, V.I., Ruzankin, S.F., and Zhidomirov, G.M., Kinet. Catal., 2005, vol. 46, no. 2, pp. 177–188.

    Article  CAS  Google Scholar 

  23. Kirmse, W.M., Carbene Chemistry, New York: Academic Press, 1964

    Google Scholar 

  24. Nefedov, O.M., Ioffe, A.I., and Menchikov, L.G., Khimiya karbenov (Carbene Chemistry), Moscow: Khimiya, 1990.

    Google Scholar 

  25. Emel’yanov, V.E. and Skvortsov, V.N., Motornye topliva. Antidetonatsionnye svoistva i vosplamenyaemost' (Motor Fuels: Antiknock Properties and Inflammability), St. Petersburg: Tekhnika. TUMA GRUPP, 2006.

    Google Scholar 

  26. Reference Data for Hydrocarbons and Petro-Sulfur Compounds, Bartlesville, OK: Philips Petroleum Company, 1945.

  27. TR TS (Customs Union Technical Regulation) 013/2011: Requirements to Automobile and Aviation Gasoline, Diesel and Ship Fuel, Jet Engine Fuel and Furnace Boiler Oil, 2011.

  28. GOST R (Russian State Standard) 52033-2003: Motor Vehicles with Gasoline Engines. Emissions of the Exhaust Gas Pollutants. Norms and Methods of Control for the Estimation of Technical State, 2003.

  29. Kapustin, V.M. and Gureev, A.A., Tekhnologiya pererabotki nefti (Oil Refining Technology), vol. 2: Destruktivnye protsessy (Destructive Processes), Moscow: KolosS, 2007.

    Google Scholar 

  30. Parmon, V.N., Panov, G.I., Uriarte, A., and Noskov, A.S., Catal. Today, 2005, vol. 100, nos. 1–2, pp. 115–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kharitonov.

Additional information

Original Russian Text © A.S. Kharitonov, D.P. Ivanov, M.V. Parfenov, L.V. Piryutko, S.V. Semikolenov, K.A. Dubkov, V.Yu. Pereima, A.S. Noskov, D.O. Kondrashev, A.V. Kleymenov, O.S. Vedernikov, S.E. Kuznetsov, V.V. Galkin, P.A. Abrashenkov, 2017, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, A.S., Ivanov, D.P., Parfenov, M.V. et al. New methods for the preparation of high-octane components from catalytic cracking olefins. Catal. Ind. 9, 204–211 (2017). https://doi.org/10.1134/S2070050417030060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050417030060

Keywords

Navigation