Skip to main content
Log in

Effect of the design of a feedstock injection device in a fluidized-bed reactor on the efficiency of the reaction using the dehydrogenation of iso-paraffins in a fluidized chromia–alumina catalyst bed as an example

  • Engineering Problems. Operation and Production
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Mathematical modeling is performed for the operation of two units of industrial chemical fluidized-bed reactors with different gas feedstock injection devices, i.e, three toroidal rings with nozzles in unit 1 and a false bottom with nozzles distributed over it in unit 2. Efficiency is analyzed (using the target product (iso-butylene) yield) for the operation of the two units over 4 months under industrial conditions and revealed the higher efficiency of unit 2. To dedetrmine the reasons for different product yields in the two units, a numerical solution is found by mathematical modeling to obtain characteristic pictures of catalyst particle concentrations and temperature fields in these units. It is concluded that unit 2 is characterized by a more uniform and dense distribution of the catalyst along with more uniform heating of the reactor. Pictures of the principal catalyst circulation flows are plotted to explain the considerable difference between the catalyst concentrations and gas temperature fields. Based on the numerical solution, the operational efficiency of the two units is subjected to comparative analysis, which showed good agreement with the results from an analysis of industrial reactors. The approach used in this work could be used in designing new units and optimizing existing units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fluidization, Davidson, J.F. and Harrison, D., Eds., New-York: Academic Press, 1971.

  2. Protod’yakonov, I.O. and Chesnokov, Yu.G., Gidromekhanika psevdoozhizhennogo sloya (Fluidized Bed Hydromechanics), Leningrad: Khimiya, 1982.

    Google Scholar 

  3. Gidaspow, D., Multiphase Flow and Fluidization, Boston: Academic Press, 1994.

    Google Scholar 

  4. Jackson, R., The Dynamics of Fluidized Particles, Cambridge: Cambridge University Press, 2000.

    Google Scholar 

  5. Gibilaro, L.G., Fluidization Dynamics, London: Butterworth-Heinemann, 2001.

    Google Scholar 

  6. Gel’perin, N.I., Ainshtein, V.G., and Kvasha, V.B., Osnovy tekhniki psevdoozhizheniya (Principles of Fluidization Technique), Moscow: Khimiya, 1967.

    Google Scholar 

  7. Mukhlenov, I.P., Sazhina, B.S., and Frolova, V.F., Raschety apparatov kipyashchego sloya (Calculations of Fluidized Bed Apparatuses), Leningrad: Khimiya, 1986.

    Google Scholar 

  8. Kunii, D. and Levenspiel, O., Fluidization Engineering, London: Butterworth-Heinemann, 1991.

    Google Scholar 

  9. Kravtsov, A.V., Ivanchina, E.D., Ivashkina, E.N., Kostenko, A.V., Yur’ev, E.M., and Beskov, V.S., Katal. Promsti, 2008, no. 6, p.41.

    Google Scholar 

  10. Ivashkina, E.N., Frantsina, E.V., Romanovskii, R.V., Dolganov, I.M., Ivanchina, E.D., and Kravtsov, A.V., Catal, Ind., 2012, vol. 4, no. 2, pp. 110–120.

    Article  Google Scholar 

  11. Gyngazova, M.S., Kravtsov, A.V., Ivanchina, E.D., Korolenko, M.V., and Chekantsev, N.V., Chem. Eng. J., 2011, vols. 176–177, pp. 134–143.

    Article  Google Scholar 

  12. Frantsina, E.V., Ivashkina, E.N., Ivanchina, E.D., and Romanovskii, R.V., Chem. Eng. J., 2014, vol. 238, pp. 129–139.

    Article  CAS  Google Scholar 

  13. Egorov, A.G., Gilmanov, Kh.Kh., Lamberov, A.A., and Urtyakov, P.V., Catal. Ind., 2014, vol. 6, no. 4, pp. 283–291.

    Article  Google Scholar 

  14. Chalermsinsuwan, B, Samruamphianskun, T., and Piumsomboon, P., Chem. Eng. Res. Des., 2014, vol. 92, no. 11, pp. 2479–2492.

    Article  CAS  Google Scholar 

  15. Deb, S. and Tafti, D.K., Particuology, 2014, vol. 16, pp. 19–28.

  16. Zhuang, Y.-Q., Chen, X.-M., Luo, Z.-H., and Xiao, J., Comput. Chem. Eng., 2014, vol. 60, pp. 1–16.

    Article  CAS  Google Scholar 

  17. Shuai, W., Tianyu, Z., Guodong, L., Huilin, L., and Liyan, S., Fuel, 2015, vol. 139, pp. 646–651.

    Article  CAS  Google Scholar 

  18. Upadhyay, M. and Park, J.-H., Powder Technol., 2015, vol. 272, pp. 260–268.

    Article  CAS  Google Scholar 

  19. Lebedev, N.N., Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza (Basic Organic and Petrochemical Synthesis: Chemistry and Technology), Moscow: Khimiya, 1981.

    Google Scholar 

  20. Tyuryaev, I.Ya., Fiziko-khimicheskie i tekhnologicheskie osobennosti polucheniya divinila iz butana i butilena (Physicochemical and Engineering Aspects of the Synthesis of Divinyl from Butane and Butylene), Leningrad: Khimiya, 1965.

    Google Scholar 

  21. Bowen, R.M., in Continuum Physics, Eringen, A.C., Ed., New-York: Academic Press, 1976, vol. 3, pp. 1–127.

    Article  Google Scholar 

  22. Ding, J. and Gidaspow, D., AICHE Journal, 1990, vol. 36, no. 4, pp. 523–538.

    Article  CAS  Google Scholar 

  23. Schiller, L. and Naumann, Z., Z. Ver. Deutsch. Ing., 1935, vol. 77, p.318.

    Google Scholar 

  24. Syamlal, M. and O’Brien, T.J., AIChE Symp. Ser., 1989, vol. 85, pp. 22–31.

    Google Scholar 

  25. Syamlal, M., The Particle-Particle Drag Term in a Multiparticle Model of Fluidization, Morgantown, WV: EG & G Washington Analytical Service Center, 1987.

    Google Scholar 

  26. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., and Chepurniy, N., J. Fluid Mech., 1984, vol. 140, pp. 223–256.

    Article  Google Scholar 

  27. Ranz, W.E. and Marshall, W.R., Chem. Eng. Prog., 1952, vol. 48, no. 4, pp. 173–180.

    CAS  Google Scholar 

  28. Gunn, D.J., Int. J. Heat Mass Transfer, 1978, vol. 21, no. 4, pp. 467–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Solov’ev.

Additional information

Original Russian Text © S.A. Solov’ev, A.G. Egorov, A.A. Lamberov, S.R. Egorova, A.N. Kataev, 2015, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, S.A., Egorov, A.G., Lamberov, A.A. et al. Effect of the design of a feedstock injection device in a fluidized-bed reactor on the efficiency of the reaction using the dehydrogenation of iso-paraffins in a fluidized chromia–alumina catalyst bed as an example. Catal. Ind. 8, 48–55 (2016). https://doi.org/10.1134/S207005041601013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005041601013X

Keywords

Navigation