Skip to main content
Log in

Water gas shift reaction in a catalytic bubbling fluidized bed reactor

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The water gas shift reaction in a catalytic bubbling fluidized bed reactor was investigated by using simulated syngas (40% H2, 40% CO and 20% CO2) for the pre-combustion CO2 capture and hydrogen production application. A commercial low temperature shift (LTS) catalyst with particle sizes of 200-300 μm was used to investigate the promotion effect by exchanging the fixed bed reaction with the fluidized bed reactor. The effects of the reactor temperature (180-400 °C), space velocity (800-4,800 cm3/h·g), and steam/CO ratio (1.0-2.5) on the CO conversion and syngas composition were determined, and the highest CO conversion was 86.8% at 300 °C with the LTS catalyst at a space velocity of 800 cm3/h·g and steam/CO ratio of 2.5. The experiments exhibited an improvement in activity and a conversion reached that given by equilibrium at temperatures over 300 °C. Also, the performance was much improved than that when a fixed bed system was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, J. N. Kim, W. H. Eom, S. K. Ryi, J. S. Park and I. H. Baek, Chem. Eng. J., 207-208, 521 (2012).

    Article  CAS  Google Scholar 

  2. E. Fernandez, A. Helmi, K. Coenen, J. Melendez, J. L. Viviente, D. A. P. Tanaka, M. S. Annaland and F. Gallucci, Int. J. Hydrogen Energy, 40, 3506 (2015).

    Article  CAS  Google Scholar 

  3. J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R. M. Navarro and J. L. G. Fierro, J. Catal., 219, 389 (2003).

    Article  CAS  Google Scholar 

  4. S. H. Lee, J. G. Lee, J. H. Kim and Y. C. Choi, Fuel, 85, 803 (2006).

    Article  CAS  Google Scholar 

  5. E. Shoko, B. McLellan, A. L. Dicks and J. C. D. da Costa, Int. J. Coal Geol., 65, 213 (2006).

    Article  CAS  Google Scholar 

  6. S. H. Lee, K. B. Choi, J. G. Lee and J. H. Kim, Korean J. Chem. Eng., 23, 576 (2006).

    Article  CAS  Google Scholar 

  7. S. H. Lee, S. J. Yoon, H. W. Ra, Y. I. Son, J. C. Hong and J. G. Lee, Energy, 35, 3239 (2010).

    Article  CAS  Google Scholar 

  8. Hydrogen from Coal Program RD & D Plan, U. S. Dept. of Energy (2007).

  9. F. Bustamante, The High-Temperature, High-Pressure Homogeneous Water-Gas Shift Reaction in a Membrane Reactor, Ph. D. Thesis, University of Pittsburgh (2004).

    Google Scholar 

  10. H. Lim, Korean J. Chem. Eng., 32, 1522 (2015).

    Article  CAS  Google Scholar 

  11. J. L. R. Costa, G. S. Marchetti and M. D. C. Rangel, Catal. Today, 77, 205 (2002).

    Article  Google Scholar 

  12. R. E. Johnsen, A. M. Molenbroek and K. Stahl, J. Appl. Crystallogr, 39, 519 (2006).

    Article  CAS  Google Scholar 

  13. K. M. VandenBussche and G. F. Froment, J. Catal., 161, 1 (1996).

    Article  CAS  Google Scholar 

  14. Y. Choi and H. G. Stenger, J. Power Sources, 124, 432 (2003).

    Article  CAS  Google Scholar 

  15. C. S. Patil, M. V. Annaland and J. A. M. Kuipers, Ind. Eng. Chem. Res., 44, 9502 (2005).

    Article  CAS  Google Scholar 

  16. D. Kunii and O. Levenspiel, Fluidization Engineering, Butterworth- Heinemann, Massachusetts, USA (1991).

    Google Scholar 

  17. S. H. Lee, D. H. Lee and S. D. Kim, Korean J. Chem. Eng., 18, 387 (2001).

    Article  CAS  Google Scholar 

  18. S. H. Lee, S. D. Kim and S. H. Park, Korean J. Chem. Eng., 19, 1020 (2002).

    Article  CAS  Google Scholar 

  19. J. H. Lim, J. H. Shin, K. Bae, J. H. Kim, D. H. Lee, J. H. Han and D. H. Lee, Korean J. Chem. Eng., 32, 1938 (2015).

    Article  CAS  Google Scholar 

  20. W. Ruettinger, O. Ilinich and R. J. Farrauto, J. Power Sources, 118, 61 (2003).

    Article  CAS  Google Scholar 

  21. O. Arbelaez, T. R. Reina, S. Ivanova, F. Bustamante, A. L. Villa, M. A. Centeno and J. A. Odriozola, Appl. Catal. A: Gen., 497, 1 (2015).

    Article  CAS  Google Scholar 

  22. Physical and Thermodynamic Properties of Elements and Compounds, United Catalysts Inc., Louisville, KY (1990).

  23. J. R. Ladebeck and J. P. Wagner, in Handbook of Fuel cells, Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, and H. A. Gasteiger, Ed., Wiley, Chichester, Vol. 3, Part 2, 190 (2003).

  24. H. Ryu, J. Park, D. Lee, J. Park and D. Bae, Trans. Korean Hydrogen New Energy Soc., 26(2), 96 (2015).

    Article  Google Scholar 

  25. K. M. Vanden Bussche and G. F. Froment, J. Catal., 161, 1 (1996).

    Article  CAS  Google Scholar 

  26. S. Khajeh, Z. A. Aboosadi and B. Honarvar, J. Natural Gas Sci. Eng., 19, 152 (2014).

    Article  CAS  Google Scholar 

  27. V. D. Laan and G. P. Beenackers, Appl. Catal. A: Gen., 193, 39 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Min Sohn.

Additional information

This article is dedicated to Prof. Seong Ihl Woo on the occasion of his retirement from KAIST.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Park, S.T., Lee, R. et al. Water gas shift reaction in a catalytic bubbling fluidized bed reactor. Korean J. Chem. Eng. 33, 3523–3528 (2016). https://doi.org/10.1007/s11814-016-0208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0208-1

Keywords

Navigation