Skip to main content
Log in

Commercial nickel-kieselguhr isopropanol dehydrogenation catalysts: Morphology and catalytic and electronic properties

  • Domestic Catalysts
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Isopropanol conversion over commercial nickel-kieselguhr catalyst is studied. It is found that using this catalyst allows the single-step production of acetone (in contrast to familiar two-step technologies) with a catalyst not been previously used in this process in a range of moderate temperatures with a feedstock conversion of 97% and a target product yield of 82.4%. Changes that occur in the phase composition, surface structure, and electronic properties of the nickel catalyst under the action of the reaction medium are studied via scanning electron microscopy, thermal analysis, X-ray diffraction, and conductometry. It is shown that the conversion of isopropanol into acetone through the dehydrogenation reaction is accompanied by a loosening of the initial homogeneous globular structure of the catalyst to form nickel nanoclusters. Active sites in the alcohol conversion reactions are nickel ions in different states of oxidation and cationic and anionic vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reznik, I.D., Ermakov, G.P., and Shneerson, Ya.M., Nikel’ (Nickel), Moscow: Nauka i Tekhnologiya, 2003.

    Google Scholar 

  2. Arutyunov, V.S. and Krylov, O.V., Russ. Chem. Rev., 2005, vol. 74, no. 12, pp. 1111–1137.

    Article  CAS  Google Scholar 

  3. Shalin, R.E., Svetlov, I.L., Kachalov, E.B., Toloraiya, V.N., and Gavrilin, O.S., Monokristally nikelevykh zharoprochnykh splavov (Single Crystals of Nickel Refractory Alloys), Moscow: Mashinostroenie, 1997.

    Google Scholar 

  4. Kostromina, N.A., Kumok, V.N., and Kumok, N.A., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  5. Semenistaya, T.V. and Shagisultanova, G.A., Zh. Neorg. Khim., 2003, vol. 48, no. 4, pp. 602–610.

    CAS  Google Scholar 

  6. Physical Metallurgy, Cahn, R.W. and Haasen, P., Eds., Amsterdam: Elsevier, 1983.

  7. Volkov, V.A., Vonskii, E.V., and Kuznetsova, G.I., Vydayushchiesya khimiki mira. Bibliograficheskii spravochnik (Outstanding World Chemists: A Bibliographic Handbook), Moscow: Vysshaya Shkola, 1991.

    Google Scholar 

  8. Zamaraev, K.I., Kinet. Katal., 1980, vol. 21, no. 1, pp. 36–52.

    CAS  Google Scholar 

  9. Sokol’skii, D.V. and Zakumbaeva, G.D., Adsorbtsiya i kataliz na metallakh VIII gruppy (Adsorption and Catalysts on Group VIII Metals), Alma-Ata: Nauka, 1973.

    Google Scholar 

  10. Maksimov, A.L., Kuklin, S.N., Kardasheva, Yu.S., and Karakhanov, E.A., Pet. Chem., 2013, vol. 53, no. 3, pp. 157–163.

    Article  CAS  Google Scholar 

  11. Potekhin, V.M. and Potekhin, V.V., Osnovy teorii khimicheskikh protsessov tekhnologii organicheskikh veshchestv i neftepererabotki (Theoretical Foundations of Chemical Processes in Organics Technology and Oil Refining), St. Petersburg: Khimizdat, 2005.

    Google Scholar 

  12. Navalikhina, M.D. and Krylov, O.V., Russ. Chem. Rev., 1998, vol. 67, no. 7, pp. 587–616.

    Article  Google Scholar 

  13. Egubaev, S.Kh., Katal. Prom-sti, 2001, no. 2, pp. 24–32.

    Google Scholar 

  14. Gladky, A.Yu., Ustugov, V.V., Sorokin, A.M., Nizovskii, A.I., Parmon, V.N., and Bukhtiyarov, V.I., Chem. Eng. J., 2005, vol. 107, nos. 1–3, pp. 33–38.

    Article  CAS  Google Scholar 

  15. Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

  16. Ermakov, Yu.I., Zakharov, V.A., and Kuznetsov, B.N., Zakreplennye kompleksy na oksidnykh nositelyakh v katalize (Immobilized Complexes on Oxide Supports in Catalysis), Novosibirsk: Nauka, 1980.

    Google Scholar 

  17. Wen, X., Li, R., Yang, Y., Chen, J., and Zhang, F., Appl. Catal., A, 2013, vol. 468, pp. 204–215.

    Article  CAS  Google Scholar 

  18. Li, H., Xu, Y., Gao, C., and Zhao, Y. Catal. Today, 2010, vol. 158, nos. 34, pp. 475–480.

    Article  CAS  Google Scholar 

  19. Kurina, L.N., Galaktionova, L.V., Guseinova, E.A., and Adzhamov, K.Yu., Azerb. Khim. Zh., 2010, no. 3, pp. 116–119.

    Google Scholar 

  20. Guseinova, E.A. and Adzhamov, K.Yu., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 11, pp. 1965–1970.

    Article  CAS  Google Scholar 

  21. Guseinova, E.A., Abbasov, Ya.A., Adzhamov, K.Yu., and Ismailov, E.G., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 1, pp. 141–145.

    Article  CAS  Google Scholar 

  22. Guseinova, E.A., Agaguseinova, M.A., and Adzhamov, K.Yu., Abstract of Papers, Trudy II RossiiskoAzerbaidzhanskogo simpoziuma s mezhdunarodnym uchastiem “Kataliz v reshenii problem neftekhimii i neftepererabotki” (Proc. II Russia-Azerbaijan Symposium with International Participation “Catalysts for Solving the Problems of Petroshemistry and Oil Refining”), St. Petersburg, 2013, p. 78.

    Google Scholar 

  23. Taylor, K.N.R. and Darby, M.I., Physics of Rare Earth Solids, London: Chapman & Hall, 1972.

    Google Scholar 

  24. Wolkenshtein, T., Electronic Processes on Semiconductor Surfaces during Chemosorption, New York: Consultant Bureau, 1991.

    Book  Google Scholar 

  25. Kiselev, V.F. and Krylov, O.V., Elektronnye yavleniya v adsorbtsii i katalize na polyprovodnikakh i dielektrikakh (Electronic Phenomena in Adsorption and Catalysis on Semiconductors and Dielectrics), Moscow: Nauka, 1979.

    Google Scholar 

  26. Panchenkov, G.M. and Lebedev, V.P., Khimicheskaya kinetika i kataliz (Chemical Kinetics and Catalysis), Moscow: Khimiya, 1974.

    Google Scholar 

  27. Ugai, Ya.A., Vvedenie v khimiyu poluprovodnikov (Introduction to Semiconductor Chemistry), Moscow: Vysshaya Shkola, 1965.

    Google Scholar 

  28. Chebotin, V.N., Fizicheskaya khimiya tverdogo tela (Physical Chemistry of Solids), Moscow: Khimiya, 1982.

    Google Scholar 

  29. Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  30. Terminologicheskii spektr fiziki: Slovar’ (Spectrum of Physical Terms: A Dictionary), Mazunov, V.M., Vasil’ev, Yu.V., and Kantor, E.A., Eds., Ufa: Ufimsk. Gos. Neft. Tekhn. Univ., 2005.

  31. Drozdov, A.A., Zlomanov, V.P., Mazo, G.N., and Spiridonov, F.M., Neorganicheskaya khimiya. Khimiya perekhodnykh elementov (Inorganic Chemistry. Chemistry of Transition Elements), Tret’yakov, Yu.D., Ed., Moscow: Akademiya, 2006, vol. 3, part. 1.

  32. West, A.R., Solid State Chemistry and Its Applications, New York: Wiley, 1985.

    Google Scholar 

  33. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: Elsevier, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Guseinova.

Additional information

Original Russian Text © E.A. Guseinova, E.T. Zeinalov, K.Yu. Adzhamov, 2015, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseinova, E.A., Zeinalov, E.T. & Adzhamov, K.Y. Commercial nickel-kieselguhr isopropanol dehydrogenation catalysts: Morphology and catalytic and electronic properties. Catal. Ind. 7, 227–233 (2015). https://doi.org/10.1134/S207005041503006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005041503006X

Keywords

Navigation