Skip to main content
Log in

Esterification of ethyl hexanoic acid using flow-through catalytic membrane reactor

  • General Problems of Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Catalytic membrane reactors, as a promising novel technology, are widely recommended for carrying out heterogeneous reactions. If the reactant feed is forced to flow through the pores of a membrane, which has been impregnated with a convenient catalyst, the intense contact provides high catalytic activity with negligible resistance to diffusive mass transport. The synthesis of a fatty ester (ethylhexanoic ester) by esterification was developed by the Factorial Design and Response Surface Methodology (FDRSM). Selection of factors was based on the operating conditions that have a significant influence on the esterification process, namely temperature, molar ratio of ethanol to fatty acid, and internal surface area of membrane pores. Experimental results indicated that the optimum conditions (under which the conversion achieved 99.7%) were as follows: temperature of 30°C, molar ratio of 5: 1, and internal membrane area of 252450 cm2. It can be concluded that the factorial design is an important tool to reduce time and to facilitate reaching optimum reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teplyakov, V.V., Pisarev, G.I., Magsumov, M.I., Tsodikov, M.V., Zhu, W., and Kapteijn, F., Catal. Today, 2006, vol. 118, nos. 1–2, pp. 7–11.

    Article  CAS  Google Scholar 

  2. Dittmeyer, R., Svajda, K., and Reif, M., Top. Catal., 2004, vol. 29, nos. 1–2, pp. 3–27.

    Article  CAS  Google Scholar 

  3. Miachon, S. and Dalmon, J.-A., Top. Catal., 2004, vol. 29, nos. 1–2, pp. 59–65.

    Article  CAS  Google Scholar 

  4. Wang, H., Cong, Y., and Yang, W., Catal. Today, 2003, vol. 82, nos. 1–4, pp. 157–166.

    Article  CAS  Google Scholar 

  5. Tsodikov, M.V., Laguntsov, N.I., Magsumov, M.I., Spiridonov, P.V., Bukhtenko, O.V., Zhdanova, T.N., and Teplyakov, V.V., Russ. Chem. Bull., 2004, vol. 53, no. 12, pp. 2723–2729.

    Article  CAS  Google Scholar 

  6. El-Zanati, E. and Abdallah, H., Int. J. Emerging Trends Eng. Dev., 2012, vol. 5, no. 2, pp. 505–521.

    Google Scholar 

  7. El-Zanati, E., Ritchie, S.M., Abdallah, H., Ettouny, R., and El-Rifai, M.A., Int. J. Chem. React. Eng., 2011, vol. 9, no. 1. doi 10.1515/1542-6580.2518.

    Google Scholar 

  8. Ajmera, S.K., Delattre, C., Schmidt, M.A., and Jensen, K.F., J. Catal., 2002, vol. 209, no. 2, pp. 401–412.

    Article  CAS  Google Scholar 

  9. Albo, S.E., Broadbelt, L.J., and Snurr, R.Q., AIChE J., 2006, vol. 52, no. 11, pp. 3679–3687.

    Article  CAS  Google Scholar 

  10. Westermann, T., Kopriwa, N., Schröder, A., and Melin, T., Chem. Eng. Sci., 2010, vol. 65, no. 5, pp. 1609–1615.

    Article  CAS  Google Scholar 

  11. Westermann, T. and Melin, T., Chem. Eng. Process, 2009, vol. 48, no. 1, pp. 17–28.

    Article  CAS  Google Scholar 

  12. Berchmans, H.J. and Hirata, S., Bioresour. Technol., 2008, vol. 99, no. 6, pp. 1716–1721.

    Article  CAS  Google Scholar 

  13. Lee, J.-S. and Saka, S., Bioresour. Technol., 2010, vol. 101, no. 19, pp. 7191–7200.

    Article  CAS  Google Scholar 

  14. Haas, M.J., McAloon, A.J., Yee, W.C., and Foglia, T.A., Bioresour. Technol., 2006, vol. 97, no. 4, pp. 671–678.

    Article  CAS  Google Scholar 

  15. Liu, Y., Lotero, E., and Goodwin, J.G.Jr., J. Mol. Catal. A: Chem., 2006, vol. 245, nos. 1–2, pp. 132–140.

    Article  CAS  Google Scholar 

  16. Liu, Y., Yan, Y., Hu, F., Yao, A., Wang, Z., and Wei, F., AIChE J., 2010, vol. 56, no. 6, pp. 1659–1665.

    CAS  Google Scholar 

  17. Westermann, T., Kretzschmar, E., Pitsch, F., and Melin, T., Chem. Eng. J., 2009, vol. 155, nos. 1–2, pp. 371–379.

    Article  CAS  Google Scholar 

  18. Shah, T.N. and Ritchie, S.M.C., Appl. Catal., A, 2005, vol. 296, no. 1, pp. 12–20.

    Article  CAS  Google Scholar 

  19. Shah, T.N., Goodwin, J.C., and Ritchie, S.M.C., J. Membr. Sci., 2005, vol. 251, nos. 1–2, pp. 81–89.

    Article  CAS  Google Scholar 

  20. Vicente, G., Martinez, M., and Aracil, J., Bioresour. Technol., 2007, vol. 98, no. 9, pp. 1724–1733.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham El-Zanati.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Zanati, E., Abdallah, H. Esterification of ethyl hexanoic acid using flow-through catalytic membrane reactor. Catal. Ind. 7, 91–97 (2015). https://doi.org/10.1134/S2070050415020038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050415020038

Keywords

Navigation