Skip to main content
Log in

Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield

  • Catalysis in Petroleum Refining Industry
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Nickel-molybdenum hydrocracking catalysts based on amorphous silica-aluminas (ASAs) with Si/Al = 0.3–1.5 have been prepared using chemicals and methods available for catalyst plants. The acidic properties of the ASA surface have been investigated by IR spectroscopy of adsorbed CO, and it has been demonstrated that the Si/Al ratio has an effect on the concentration and strength of Brønsted and Lewis acid sites in the ASA. The catalysts have been characterized by low-temperature nitrogen adsorption and transmission electron microscopy, and it was found that the Si/Al ratio in the ASA has a considerable effect on the textural properties of the catalysts and only a slight effect on the particle size of the sulfide active component. The catalysts have been tested in vacuum gas oil hydrocracking in a laboratory-scale high-pressure flow reactor under typical industrial hydrocracking conditions. The highest diesel fraction yield (>60 wt % at 400°C) has been obtained with the catalyst based on the Si/Al = 0.9 ASA, which has the strongest Brønsted acid sites. With the catalysts based on the Si/Al = 0.3 and 1.5 ASAs, the diesel fraction yield is much lower. This may be due to the lower concentration and strength of acid sites in these catalysts and their smaller specific surface area. The NiMo catalyst based on Si/Al ≈ 0.9 ASA is recommended for industrial use in refineries aimed at obtaining the maximum possible yield of low-sulfur, high-cetane, diesel fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galkin, V.V., Makhiyanov, V.A., and Levinbuk, M.I., Mater konf. RRTC-2013 (Proc. RRTC-2013 Conf.), Moscow, 2013.

    Google Scholar 

  2. Minderhoud, J.K., van Veen, J.A.R., and Hagan, A.P., Hydrotreatment and Hydrocracking of Oil Fractions, Amsterdam: Elsevier, 1999, pp. 3–30.

    Book  Google Scholar 

  3. Ward, J.W., Fuel Process. Technol., 1993, vol. 35, pp. 55–85.

    Article  CAS  Google Scholar 

  4. Dik, P.P., Klimov, O.V., Koryakina, G.I., Leonova, K.A., Pereyma, V.Yu., Budukva, S.V., Gerasimov, E.Yu., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 124–132.

    Article  Google Scholar 

  5. Parmon, V.N., Mater. I Sankt-Peterburgskogo mezhd. foruma “Innovatsionnye tekhnologii v oblasti polucheniya i primeneniya goryuchikh i smazochnykh materialov” (Proc. I St. Petersburg Int. Forum “Innovative Technologies for the Production and Application of Flammable Materials and Lubricants”), St. Petersburg, 2013, pp. 24–25.

    Google Scholar 

  6. Pashigreva, A.V., Klimov, O.V., and Bukhtiyarova, G.A., Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 109–116.

    Article  CAS  Google Scholar 

  7. Schwarz, J.A., Russel, B.G., and Harnsberger, H.F., J. Catal., 1978, vol. 54, pp. 303–317.

    Article  CAS  Google Scholar 

  8. Pieta, I.S., Ishaq, M., Wells, R.P.K., and Anderson, J.A., Appl. Catal., A, 2010, vol. 390, pp. 127–134.

    Article  CAS  Google Scholar 

  9. Shnel, R., Appl. Catal., 1984, vol. 11, pp. 271–280.

    Article  Google Scholar 

  10. Shnel, R., Appl. Catal., 1984, vol. 12, pp. 181–200.

    Google Scholar 

  11. Plank, C.J. and Drake, L.C., J. Colloid Sci., 1947, vol. 2, pp. 399–412.

    Article  CAS  Google Scholar 

  12. Hwang, S., Lee, J., Park, S., Park, D.R., Jung, J. Ch., Lee, S.-B., and Song, I.K., Catal. Lett., 2009, vol. 129, pp. 163–169.

    Article  CAS  Google Scholar 

  13. Hensen, E.J.M., Poduval, D.G., Magusin, P.C.M.M., Coumans, A.E., and van Veen, J.A.R., J. Catal., 2010, vol. 269, pp. 201–218.

    Article  CAS  Google Scholar 

  14. Ishihara, A., Negura, H., Hashimoto, T., and Nasu, H., Appl. Catal., A, 2010, vol. 388, pp. 68–76.

    Article  CAS  Google Scholar 

  15. Corma, A., Martinez, A., Pergher, S., Peratello, S., Perego, C., and Bellusi, G., Appl. Catal., A, 1997, vol. 152, pp. 107–125.

    Article  CAS  Google Scholar 

  16. Carati, A., Ferraris, G., Guidotti, M., Moretti, G., Psaro, R., and Rizzo, C., Cataly. Today, 2003, vol. 77, pp. 315–323.

    Article  CAS  Google Scholar 

  17. Leydier, F., Chizallet, C., Chaumonnot, A., Digne, M., Soyer, E., Quoineaud, A., Costa, D., and Raybaud, P., J. Catal., 2011, vol. 284, pp. 215–229.

    Article  CAS  Google Scholar 

  18. Manton, M.R.S. and Davidtz, J.C., J. Catal., 1979, vol. 60, pp. 156–166.

    Article  CAS  Google Scholar 

  19. Bandopadhyay, A.K., Das, J., and Roy, S.K., J. Catal., 1990, vol. 124, pp. 241–246.

    Article  CAS  Google Scholar 

  20. US Patent 3974099, 1976.

  21. US Patent 4499197, 1985.

  22. US Patent 7186757, 2007.

  23. US Patent 7323100, 2008.

  24. US Patent 7541310, 2009

  25. US Patent 4711868, 1987.

  26. Leyva, C., Ancheyta, J., Travert, A., Maugé, F., Mariey, L., Ramírez, J., and Rana, M.S., Appl. Catal., A, 2012, vols. 425–426, pp. 1–12.

    Article  Google Scholar 

  27. Leyva, C., Rana, M.S., Trejo, F., and Ancheyta, J., Catal. Today, 2009, vol. 141, pp. 168–175.

    Article  CAS  Google Scholar 

  28. WO Patent 2004/043582, 2004.

  29. US Patent 6399530, 2002.

  30. Klimov, O.V., Leonova, K.A., Koryakina, G.I., Gerasimov, E.Yu., Prosvirin, I.P., Cherepanova, S.V., Budukva, S.V., Pereyma, V.Yu., Dik, P.P., Parakhin, O.A., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 66–77.

    Article  Google Scholar 

  31. RF Patent 2472585, 2013.

  32. Bukhtiyarova, G.A., Klimov, O.V., Pashigreva, A.V., Aleksandrov, P.V., Kashkin, V.N., and Noskov, A.S., Oil Gas J. Russ., 2010, vol. 37, pp. 58–66.

    Google Scholar 

  33. Ivanova, A.S., Korneeva, E.V., Bukhtiyarova, G.A., Nuzhdin, A.L., Budneva, A.A., Prosvirin, I.P., Zaikovskii, V.I., and Noskov, A.S., Kinet. Catal., 2011, vol. 52, pp. 446–458.

    Article  CAS  Google Scholar 

  34. Paukshtis, E.A., IK spektroskopiya v geterogennom kislotno-osnovnom katalize (IR Spectroscopy Applied to Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

    Google Scholar 

  35. Leonova, K.A., Klimov, O.V., Gerasimov, E.Yu., Dik, P.P., Pereyma, V.Yu., Budukva, S.V., and Noskov, A.S., Adsorption, 2013, vol. 19, pp. 723–731.

    Article  CAS  Google Scholar 

  36. Eijsbouts, S., van den Oetelaar, L.C.A., and van Puijenbroek, R.R, J. Catal., 2005, vol. 229, pp. 352–364.

    Article  CAS  Google Scholar 

  37. Francis, J., Guillon, E., Bats, N., Pichon, C., Corma, A., and Simon, L.J., Appl. Catal., A, 2011, vols. 409–410, pp. 140–147.

    Article  Google Scholar 

  38. Kapustin, V.M. and Rudin, M.G., Khimiya i tekhnologiya pererabotki nefti (Petroleum Refining Chemistry and Technology), Moscow: Khimiya, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Dik.

Additional information

Original Russian Text © P.P. Dik, O.V. Klimov, S.V. Budukva, K.A. Leonova, V.Yu. Pereyma, E.Yu. Gerasimov, I.G. Danilova, A.S. Noskov, 2014, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dik, P.P., Klimov, O.V., Budukva, S.V. et al. Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield. Catal. Ind. 6, 231–238 (2014). https://doi.org/10.1134/S2070050414030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050414030076

Keywords

Navigation