Skip to main content
Log in

On the Accuracy of a MUSCL-Type Scheme when Calculating Discontinuous Solutions

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The accuracy of the central difference Nessyahu-Tadmor (NT) scheme is studied when calculating shock waves propagating at a variable velocity. It is shown that this scheme (in the construction of which the second-order MUSCL reconstruction of flows is used) has approximately the first order of both local convergence in the regions of influence of shock waves and integral convergence in intervals, one of the boundaries of which is in the region of influence of the shock wave. As a result, in these areas, the local accuracy of the NT scheme is significantly reduced. Test calculations are presented that demonstrate these properties of the NT scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. K. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics,” Mat. Sb. 89, 271–306 (1959).

  2. B. van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979). https://doi.org/10.1016/0021-9991(79)90145-1

    Article  MATH  Google Scholar 

  3. A. Harten, “High resolution schemes for hyperbolic conservation laws,” J. Comput. Phys. 49, 357–393 (1983). https://doi.org/10.1016/0021-9991(83)90136-5

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes. I,” SIAM J. Numer. Anal. 24, 279–309 (1987). https://doi.org/10.1137/0724022

    Article  MathSciNet  MATH  Google Scholar 

  5. G.-S. Jiang and C.-W. Shu, “Efficient implementation of weighted ENO schemes,” J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  6. S. A. Karabasov and V. M. Goloviznin, “Compact Accurately Boundary-Adjusting high-REsolution Technique for fluid dynamics,” J. Comput. Phys. 228, 7426–7451 (2009). https://doi.org/10.1016/j.jcp.2009.06.037

    Article  MathSciNet  MATH  Google Scholar 

  7. V. V. Ostapenko, “Approximation of conservation laws by high-resolution difference schemes,” USSR Comput. Math. Math. Phys. 30 (5), 91–100 (1990). https://doi.org/10.1016/0041-5553(90)90165-O

    Article  MATH  Google Scholar 

  8. V. V. Ostapenko, “A method of increasing the order of the weak approximation of the laws of conservation on discontinuous solutions,” Comput. Math. Math. Phys. 36, 1443–1451 (1996).

    MathSciNet  MATH  Google Scholar 

  9. V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves,” Comput. Math. Math. Phys. 40, 1784–1800 (2000).

    MathSciNet  MATH  Google Scholar 

  10. V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front,” Comput. Math. Math. Phys. 37, 1161–1172 (1997).

    MathSciNet  MATH  Google Scholar 

  11. J. Casper and M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound,” SIAM J. Sci. Comput. 19, 813–828 (1998).

    Article  MathSciNet  Google Scholar 

  12. B. Engquist and B. Sjögreen, “The convergence rate of finite difference schemes in the presence of shocks,” SIAM J. Numer. Anal. 35, 2464–2485 (1998).

    Article  MathSciNet  Google Scholar 

  13. O. A. Kovyrkina and V. V. Ostapenko, “On the convergence of shock-capturing difference schemes,” Dokl. Math. 82, 599–603 (2010). https://doi.org/10.1134/S1064562410040265

    Article  MathSciNet  MATH  Google Scholar 

  14. O. A. Kovyrkina and V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes,” Math. Models Comput. Simul. 6 (2), 183–191 (2014). https://doi.org/10.1134/S2070048214020069

    Article  MathSciNet  Google Scholar 

  15. N. A. Mikhailov, “The convergence order of WENO schemes behind a shock front,” Math. Models Comput. Simul. 7, 467–474 (2015). https://doi.org/10.1134/S2070048215050075

    Article  MathSciNet  Google Scholar 

  16. O. A. Kovyrkina and V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme for calculating weak solutions with shocks,” Vychisl. Tekhnol. 23 (2), 37–54 (2018). https://doi.org/10.25743/ICT.2018.23.12757

  17. H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87, 408–463 (1990). https://doi.org/10.1016/0021-9991(90)90260-8

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Kurganov and E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations,” J. Comput. Phys. 160, 241–282 (2000). https://doi.org/10.1006/jcph.2000.6459

    Article  MathSciNet  MATH  Google Scholar 

  19. V. V. Ostapenko, Hyperbolic Systems of Conservation Laws and Their Application to the Theory of Shallow Water, 2nd ed. (Novosib. Gos. Univ., Novosibirsk, 2014) [in Russian].

    Google Scholar 

  20. V. V. Rusanov, “Difference schemes of the third order of accuracy for continuous computation of discontinuous solutions,” Sov. Math. Dokl. 9, 771–774 (1968).

    MATH  Google Scholar 

  21. V. V. Ostapenko, “On the finite-difference approximation of the Hugoniot conditions on a shock wave front propagating with variable velocity,” Comput. Math. Math. Phys. 38, 1299–1311 (1998).

    MathSciNet  MATH  Google Scholar 

  22. O. A. Kovyrkina and V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy,” Dokl. Math. 97, 77–81 (2018). https://doi.org/10.1134/S1064562418010246

    Article  MathSciNet  MATH  Google Scholar 

  23. M. D. Bragin and B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves,” Comput. Math. Math. Phys. 60, 864–878 (2020). https://doi.org/10.1134/S0965542520050061

    Article  MathSciNet  MATH  Google Scholar 

  24. O. A. Kovyrkina and V. V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws,” Comput. Math. Math. Phys. 58, 1435–1450 (2018). https://doi.org/10.1134/S0965542518090129

    Article  MathSciNet  MATH  Google Scholar 

  25. N. A. Zyuzina, O. A. Kovyrkina, and V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence,” Dokl. Math. 98, 506–510 (2018). https://doi.org/10.1134/S1064562418060315

    Article  MATH  Google Scholar 

  26. V. V. Ostapenko and N. A. Khandeeva, “The accuracy of finite-difference schemes calculating the interaction of shock waves,” Dokl. Phys. 64, 197–201 (2019). https://doi.org/10.1134/S1028335819040128

    Article  Google Scholar 

  27. M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, and V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas,” Dokl. Math. 100, 519–523 (2019). https://doi.org/10.1134/S106456241906005X

    Article  MATH  Google Scholar 

  28. M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves,” Dokl. Math. 101, 239–243 (2020). https://doi.org/10.1134/S1064562420020076

    Article  Google Scholar 

  29. B. Cockburn, “An introduction to the discontinuous Galerkin method for convection- dominated problems,” in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Ed. by A. Quarteroni, Lecture Notes in Mathematics (Springer, Berlin, 1998), Vol. 1697, pp. 151–268. https://doi.org/10.1007/BFb0096353

  30. A. Gelb and E. Tadmor, “Spectral reconstruction of piecewise smooth functions from their discrete data,” ESAIM: Math. Modell. Numer. Anal. 36, 155–175 (2002). https://doi.org/10.1051/m2an:2002008

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Aràndiga, A. Baeza, and R. Donat, “Vector cell-average multiresolution based on Hermite interpolation,” Adv. Comput. Math. 28 (1), 1–22 (2008). https://doi.org/10.1007/s10444-005-9007-7

    Article  MathSciNet  MATH  Google Scholar 

  32. J.-L. Guermond, R. Pasquetti, and B. Popov, “Entropy viscosity method for nonlinear conservation laws,” J. Comput. Phys. 230, 4248–4267 (2011). https://doi.org/10.1016/j.jcp.2010.11.043

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Dewar, A. Kurganov, and M. Leopold, “Pressure-based adaption indicator for compressible Euler equations,” Numer. Methods Partial Differ. Equations 31, 1844–1874 (2015). https://doi.org/10.1002/num.21970

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 16-11-10033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Kovyrkina or V. V. Ostapenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovyrkina, O.A., Ostapenko, V.V. On the Accuracy of a MUSCL-Type Scheme when Calculating Discontinuous Solutions. Math Models Comput Simul 13, 810–819 (2021). https://doi.org/10.1134/S2070048221050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221050136

Keywords:

Navigation