Skip to main content
Log in

Simulation of viscous flows by highly accurate aeroacoustic schemes on regular grids

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Highly accurate finite-difference schemes that are widely used in computational aeroacoustics and referred to as dispersion-relation-preserving (DRP) schemes are adapted for the simulation of viscous flows. The main result consists in the construction and verification of numerical boundary conditions on a solid body, artificial boundaries, and on their interface. Calculations are performed for several test problems, including dissipation of the Lamb–Oseen vortex and decay of the Taylor–Green vortex in two-and three-dimensional cases and in infinite and semi-infinite (open-outlet) plane channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. K. W. Tam and J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics,” J. Comput. Phys. 107, 262–281 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bogey and C. Bailly, “A family of low dispersive and low dissipative explicit schemes for flow and noise computations,” J. Comput. Phys. 194, 194–214 (2004).

    Article  MATH  Google Scholar 

  3. C. K. W. Tam, “Computational aeroacoustics: an overview of computational challenges and applications,” Int. J. Comput. Fluid Dyn. 18, 547–567 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. K. W. Tam and Zh. Dong, “Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics,” Theor. Comput. Fluid Dyn. 6, 303–322 (1994).

    Article  MATH  Google Scholar 

  5. C. Bogey, N. Cacqueray, and C. Bailly, “A shock-capturing methodology based on adaptive spatial filtering for high-order non-linear computations,” J. Comput. Phys. 228, 1447–1465 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Berland, C. Bogey, O. Marsden, and C. Bailly, “High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems,” J. Comput. Phys. 224, 637–662 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. W. Kim, “Optimised boundary compact finite difference schemes for computational aeroacoustics,” J. Comput. Phys. 225, 995–1019 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. W. Dorodnicyn, “Artificial boundary conditions for high-accuracy aeroacoustic algorithms,” SIAM J. Sci. Comput. 32, 1950–1979 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. V. Dorodnitsyn, “High-accuracy finite-difference boundary conditions for two-dimensional aeroacoustic problems,” Mat. Model. 23 (11), 131–155 (2011).

    MathSciNet  Google Scholar 

  10. M. B. Giles, “Nonreflecting boundary conditions for Euler equation calculations,” AIAA J. 28, 2050–2058 (1990).

    Article  Google Scholar 

  11. G. W. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyperbolic systems,” J. Comput. Phys. 30, 222–237 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. V. Dorodnitsyn, “Transparent boundary conditions for systems of equations of gas dynamics,” Comput. Math. Math. Phys. 42, 499–525 (2002).

    MathSciNet  MATH  Google Scholar 

  13. L. V. Dorodnitsyn, “Artificial boundary conditions for numerical simulation of subsonic gas flows,” Comput. Math. Math. Phys. 45, 1209–1234 (2005).

    MathSciNet  Google Scholar 

  14. M. Calvo and J. M. Franco, L. Randez, “A new minimum storage Runge-Kutta scheme for computational acoustics,” J. Comput. Phys. 211, 1–12 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. V. Dorodnicyn, “Nonreflecting boundary conditions and numerical simulation of external flows,” Comput. Math. Math. Phys. 51, 143–159 (2011).

    Article  MathSciNet  Google Scholar 

  17. L. V. Dorodnitsyn, “Nonreflecting boundary conditions for one-dimensional problems of viscous gas dynamics,” Comput. Math. Model. 23, 408–438 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Brachet, D. Meiron, S. Orszag, et al., “Small-scale structure of the Taylor-Green vortex,” J. Fluid Mech. 130, 411–452 (1983).

    Article  MATH  Google Scholar 

  19. Problem C3.5 Direct numerical simulation of the Taylor-Green vortex at Re = 1600. http://www.as.dlr.de/hiocfd/case_c3.5.pdf.

  20. T. G. Elizarova and I. A. Shirokov, “Laminar and turbulent regimes of the Taylor–Green vortex decay,” KIAM Preprint No. 63 (Keldysh Inst. Appl. Math. RAS, Moscow, 2013).

    Google Scholar 

  21. C. Cercignani, M. Lampis, and S. Lorenzani, “Variational approach to gas flows in microchannels,” Phys. Fluids 16, 3426–3437 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. Kun Xu and Zhihui Li, “Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions,” J. Fluid Mech. 513, 87–110 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. R. Illingworth, “Some solutions of the equations of flow of a viscous compressible fluid,” Math. Proc. Cambridge Phil. Soc. 46, 469–478 (1950).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Alexandrov or L. W. Dorodnicyn.

Additional information

Original Russian Text © A.V. Alexandrov, L.W. Dorodnicyn, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 1, pp. 63–83.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.V., Dorodnicyn, L.W. Simulation of viscous flows by highly accurate aeroacoustic schemes on regular grids. Math Models Comput Simul 9, 457–473 (2017). https://doi.org/10.1134/S2070048217040020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048217040020

Keywords

Navigation