Skip to main content
Log in

Calculation of output power and X-ray spectrum of Z-pinches based on multiwire arrays

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We present mathematical models and methods of the computational experiment using a three-dimensional RMHD model simulating the implosion of Z-pinches formed by an imploding cylindrical array of thin tungsten wires. The calculations take into account the discrete structure of the array and the extended plasma formation at the evaporation of the wire material and they yield the estimated values of the output power and X-ray spectrum. The data are presented on the spatio-temporal distribution in the parameters of the Z-pinch plasma, including the velocity, electron and ion temperatures, ionization degree, and the power output integrated over space. We have also calculated the characteristics of the Z- pinch X-ray spectrum depending on the photon energy at different times after the discharge current starts. It has been found that the trailing mass of tungsten on the periphery affects the emission intensity of the central part of the pinch in the radial direction, which can be explained by the emission absorption in the peripheral plasma layers of the trailing tungsten mass. A detailed model has been constructed of the central pinch formed by the electric current implosion of the material of multiwire tungsten arrays. This model enables one to calculate the intensity of the soft X-ray emission with a temporal, spatial, angular, and spectral resolution for specific experiments on the Angara-5-1 experimental complex intended to study the implosion of cylindrical multiwire arrays, for which there is sufficient information about the time profile of the absolute emission intensity in the low-energy range of the X-ray emission. The obtained numerical results can be directly compared with the experimental values. The RMHD model simulating the implosion of Z-pinches has been verified by comparing its results with the experimental implosion indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Bolkhovitinov, G. S. Volkov, I. Yu. Vichev, E. V. Grabovskii, A. N. Gritsuk, V. I. Zaitsev, V. G. Novikov, G. M. Oleinik, A. A. Rupasov, E. V. Svetlov, A. S. Shikanov, and M. V. Fedulov, “Study of the radiation spectra of fast Z-pinches formed during the implosion of wire arrays in the Angara-5-1 facility,” Plasma Phys. Rep. 38, 824–832 (2012). doi 10.1134/S1063780X12090024

    Article  Google Scholar 

  2. B. A. Gasilov et al., “MARPLE3D package for simulation of pulsed magnetically accelerated plasma on supercomputers,” Mat. Model. 24 (1), 55–87 (2012).

    Google Scholar 

  3. V. V. Aleksandrov, E. V. Grabovskii, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, I. N. Frolov, P. V. Sasorov, A. P. Shevel’ko, V. A. Gasilov, O. G. Ol’khovskaya, A. S. Boldarev, and G. A. Bagdasarov, “Experimental and numerical study of quasispherical compression of plasma liners,” Preprint KIAM RAS No. 42 (Keldysh Inst. Appl. Math. RAS, Moscow, 2013).

    Google Scholar 

  4. M. M. Basko, P. V. Sasorov, M. Murakami, V. G. Novikov, and A. S. Grushin, “One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column,” Plasma Phys. Control. Fusion 54, 055003 (2012).

    Article  Google Scholar 

  5. M. E. Foord, R. F. Heeter, P. A. M. van Hoof, R. S. Thoe, J. E. Bailey, M. E. Cuneo, H.-K. Chung, D. A. Liedahl, K. B. Fournier, G. A. Chandler, V. Jonauskas, R. Kisielius, L. P. Mix, C. Ramsbottom, P. T. Springer, F. P. Keenan, S. J. Rose, and W. H. Goldstein, “Charge-state distribution and Doppler effect in an expanding photoionized plasma,” Phys. Rev. Lett. 93, 055002 (2004).

    Article  Google Scholar 

  6. I. Yu. Vichev, V. G. Novikov, and A. D. Solomyannaya, “Modeling of the emission spectra of tungsten plasma,” Math. Models Comput. Simul. 1, 470–481 (2009).

    Article  Google Scholar 

  7. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State (Fizmatlit, Moscow, 2000; Birkhauserg, Basel, Berlin, 2005).

    MATH  Google Scholar 

  8. V. V. Aleksandrov A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, “Dynamics of heterogeneous liners with prolonged plasma creation,” Plasma Phys. Rep. 27, 89–109 (2001).

    Article  Google Scholar 

  9. M. F. Gu, “The flexible atomic code,” Canad. J. Phys. 86, 675–689 (2008).

    Article  Google Scholar 

  10. V. I. Oreshkin, “Optimization of the parameters of plasma liners with zero-dimensional models,” Phys. Plasmas 20, 112505 (2013).

    Article  Google Scholar 

  11. V. I. Oreshkin, R. B. Baksht, A. Yu. Labetsky, N. A. Ratakhin, A. G. Rousskikh, S. A. Chaikovsky, A. V. Fedyunin, and A. V. Shishlov, “Recombination X-ray radiation from plasma liners,” Tech. Phys. Lett. 31, 567–569 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gasilov.

Additional information

Original Russian Text © O.G. Olhovskaya, V.A. Gasilov, M.M. Basko, P.V. Sasorov, V.G. Novikov, I.Yu. Vitchev, I.I. Galiguzova, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 1, pp. 3–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olhovskaya, O.G., Gasilov, V.A., Basko, M.M. et al. Calculation of output power and X-ray spectrum of Z-pinches based on multiwire arrays. Math Models Comput Simul 8, 422–437 (2016). https://doi.org/10.1134/S207004821604013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004821604013X

Keywords

Navigation