Skip to main content
Log in

Mathematical model of cellular transport network self-organization and functioning

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Contemporary cell investigation methods permit us to describe the molecular transport mechanisms of intracellular substances and cell components. Analysis of the completeness and the consistency of the existing transport network data and their utilization is an issue for mathematical modeling. Self-organization of the cell transport network and transport of the cargo and organelles upon it are modeled in this work by examples of the mitotic spindle formation, retrograde axonal transport, and lipid transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takahashi, S. N. Arjunan, and M. Tomita, “Space in systems biology of signaling pathways–to-wards intracellular molecular crowding in silico,” FEBS Lett. 579, 1783–1788 (2005).

    Article  Google Scholar 

  2. U. F. Greber and M. Way, “A superhighway to virus infection,” Cell 124, 741–754 (2006).

    Article  Google Scholar 

  3. T. Hirase and K. Node, “Endothelial dysfunction as a cellular mechanism for vascular failure,” Am. J. Physiol. Heart Circ. Physiol. 303, 499–505 (2012).

    Article  Google Scholar 

  4. E. A. Perez, “Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mecha-nisms of action, clinical activity, and resistance,” Mol. Cancer Therap. 8, 2086–2095 (2009).

    Article  Google Scholar 

  5. J. Avila, J. J. Lucas, M. Perez, and F. Hernandez, “Role of tau protein in both physiological and pathological conditions,” Physiol. Rev. 84, 361–384 (2004).

    Article  Google Scholar 

  6. I. Vorobjev, V. Malikov, and V. Rodionov, “Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules,” Proc. Natl. Acad. Sci. USA 98, 10160–10165 (2001).

    Article  Google Scholar 

  7. V. Rodionov, E. N. Cytrynbaum, and A. Mogilner, “Computational model of dynein dependent self-organization of microtubule asters,” J. Cell Sci. 117, 1381–1397 (2004).

    Article  Google Scholar 

  8. N. A. Kolchanov, Computational System Biology (Sib. Otdel. RAN, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  9. B. N. Kholodenko, “Cell-signalling dynamics in time and space,” Nature Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  Google Scholar 

  10. A. Cangiani and R. Natalini, “A spatial model of cellular molecular trafficking including active transport along microtubules,” J. Theor. Biol. 267, 614–625 (2010).

    Article  MathSciNet  Google Scholar 

  11. C. Lemerle, B. di Ventura, and L. Serrano, “Space as the final frontier in stochastic simulations of biological systems,” FEBS Lett. 579, 1789–1794 (2005).

    Article  Google Scholar 

  12. A. V. Kuznetsov, “Numerical investigation of axonal cargo rerouting in a dendrite: A three kinetic state model,” Int. J. Numer. Methods Biomed. Eng. 29, 428–443 (2013).

    Article  MathSciNet  Google Scholar 

  13. M. Tomita, “Whole-cell simulation: a grand challenge of the 21st century,” Trends Biotechnol. 19, 205–210 (2001).

    Article  Google Scholar 

  14. C. Collinet, M. Stöter, C. R. Bradshaw, N. Samusik, J. C. Rink, D. Kenski, B. Habermann, F. Buchholz, R. Henschel, M. S. Mueller, W. E. Nagel, E. Fava, Y. Kalaidzidis, and M. Zerial, “Systems survey of endocytosis by multiparametric image analysis,” Nature 464, 343–350 (2010).

    Article  Google Scholar 

  15. B. Cui, C. Wu, L. Chen, A. Ramirez, E. L. Bearer, W. P. Li, W. C. Mobley, and S. Chu, “One at a time, live tracking of NGF axonal transport using quantum dots,” Proc. Natl. Acad. Sci. USA 104, 13666–13671 (2007).

    Article  Google Scholar 

  16. H. Lodish, Molecular Cell Biology (W. H. Freeman, New York, 2007).

    Google Scholar 

  17. B. Alberts, Molecular Biology of the Cell (Garland Science, New York, 2002).

    Google Scholar 

  18. E. Schulze and M. Kirschner, “Dynamic and stable populations of microtubules in cells,” J. Cell Biol. 104, 277–288 (1987).

    Article  Google Scholar 

  19. D. van Damme, K. van Poucke, E. Boutant, C. Ritzenthaler, D. Inzé, and D. Geelen, “In vivo dynamics and differential microtubule-binding activities of map65 proteins,” Plant Physiol. 136, 3956–3967 (2004).

    Article  Google Scholar 

  20. H. Chen, J. Yang, P. S. Low, and J. X. Cheng, “Cholesterol level regulates endosome mobility via rab proteins,” Biophys. J. 94, 1508–1520 (2007).

    Article  Google Scholar 

  21. J. Huotari and A. Helenius, “Endosome maturation,” The EMBO J. 30, 3481–3500 (2011).

    Article  Google Scholar 

  22. J. A. Wattis, B. O’Malley, H. Blackburn, L. Pickersgill, J. Panovska, H. M. Byrne, and K. G. Jackson, “Mathematical model for low density lipoprotein (ldl) endocytosis by hepatocytes,” Bull. Math. Biol. 70, 2303–2333 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Paul, R. Wollman, W. T. Silkworth, I. K. Nardi, D. Cimini, and A. Mogilner, “Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy,” Proc. Natl. Acad. Sci. USA 106, 15708–15713 (2009).

    Article  Google Scholar 

  24. T. E. Holy and S. Leibler, “Dynamic instability of microtubules as an efficient way to search in space,” Proc. Natl. Acad. Sci. USA 91, 5682–5685 (1994).

    Article  Google Scholar 

  25. C. B. O’Connell and A. L. Khodjakov, “Cooperative mechanisms of mitotic spindle formation,” J. Cell Sci. 120, 1717–1722 (2007).

    Article  Google Scholar 

  26. R. Wollman, E. N. Cytrynbaum, J. T. Jones, T. Meyer, J. M. Scholey, and A. Mogilner, “Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly,” Curr. Biol. 15, 828–832 (2005).

    Article  Google Scholar 

  27. P. del Conte-Zerial, L. Brusch, J. C. Rink, C. Collinet, Y. Kalaidzidis, M. Zerial, and A. Deutsch, “Membrane identity and GTPase cascades regulated by toggle and cut-out switches,” Mol. Syst. Biol. 4, 206 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Novikov.

Additional information

Original Russian Text © K.A. Novikov, A.A. Romanyukha, A.N. Gratchev, J.G. Kzhyshkowska, O.A. Melnichenko, 2015, published in Matematicheskoe Modelirovanie, 2015, Vol. 27, No. 3, pp. 49–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, K.A., Romanyukha, A.A., Gratchev, A.N. et al. Mathematical model of cellular transport network self-organization and functioning. Math Models Comput Simul 7, 475–484 (2015). https://doi.org/10.1134/S2070048215050099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048215050099

Keywords

Navigation