Skip to main content

Intracellular Membrane Trafficking: Modeling Local Movements in Cells

  • Chapter
  • First Online:
Cell Movement

Abstract

Cells constantly exchange material and information with their environment through a variety of trafficking mechanisms. Membrane trafficking encompasses a broad range of biological processes, all of which are characterized by the local deformation and movement of the plasma membrane. These movements are orchestrated by a complex protein machinery and cytoskeletal rearrangements. While different membrane trafficking pathways use different sets of proteins, mathematical and computational models have been used with great success to identify some of the governing physical principles. Here, we review the different theoretical and computational models of local movements in cells and the insights obtained from them. We will also highlight the challenges in the field and discuss future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe F, Hiraki T (2009) Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Biomembranes 1788(3):743–752

    Article  Google Scholar 

  2. Agrawal A, Steigmann DJ (2011) A model for surface diffusion of trans-membrane proteins on lipid bilayers. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 62(3):549–563

    Article  MathSciNet  MATH  Google Scholar 

  3. Agudo-Canalejo J, Lipowsky R (2015) Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS nano 9(4):3704–3720

    Article  Google Scholar 

  4. Akamatsu M, Berro J, Pu KM, Tebbs IR, Pollard TD (2014) Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase. The Journal of Cell Biology 204(6):977–988

    Article  Google Scholar 

  5. Alberts JB, Odell GM (2004) In silico reconstitution of listeria propulsion exhibits nano-saltation. PLoS biology 2(12):e412

    Article  Google Scholar 

  6. Alimohamadi H, Vasan R, Hassinger JE, Stachowiak JC, Rangamani P (2017) The role of traction in membrane curvature generation. arXiv preprint arXiv:170609926

    Google Scholar 

  7. Allen MP, et al (2004) Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins 23:1–28

    MathSciNet  Google Scholar 

  8. An G, Mi Q, Dutta-Moscato J, Vodovotz Y (2009) Agent-based models in translational systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1(2):159–171

    Google Scholar 

  9. Andrews SS, Bray D (2004) Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Physical biology 1(3–4):137–151

    Article  Google Scholar 

  10. Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS computational biology 6(3):e1000,705

    Article  Google Scholar 

  11. Anitei M, Hoflack B (2012) Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nature cell biology 14(1):11

    Article  Google Scholar 

  12. Antal T, Krapivsky P (2005) “Burnt-bridge”mechanism of molecular motor motion. Physical Review E 72(4):046,104

    Article  Google Scholar 

  13. Arcario MJ, Ohkubo YZ, Tajkhorshid E (2011) Capturing spontaneous partitioning of peripheral proteins using a biphasic membrane-mimetic model. The Journal of Physical Chemistry B 115(21):7029–7037

    Article  Google Scholar 

  14. Argudo D, Bethel NP, Marcoline FV, Grabe M (2016) Continuum descriptions of membranes and their interaction with proteins: Towards chemically accurate models. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858(7):1619–1634

    Article  Google Scholar 

  15. Arkhipov A, Yin Y, Schulten K (2008) Four-scale description of membrane sculpting by bar domains. Biophysical journal 95(6):2806–2821

    Article  Google Scholar 

  16. Arkhipov A, Yin Y, Schulten K (2009) Membrane-bending mechanism of amphiphysin n-bar domains. Biophysical journal 97(10):2727–2735

    Article  Google Scholar 

  17. Bahrami AH, Hummer G (2017) Formation and stability of lipid membrane nanotubes. ACS nano

    Google Scholar 

  18. Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) Copii: a membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77(6):895–907

    Article  Google Scholar 

  19. Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophysical journal 89(2):1067–1080

    Article  Google Scholar 

  20. Beltzner CC, Pollard TD (2008) Pathway of actin filament branch formation by Arp2/3 complex. The Journal of biological chemistry 283(11):7135–7144

    Article  Google Scholar 

  21. Beltzner CC, Pollard TD (2008) Pathway of actin filament branch formation by arp2/3 complex. Journal of Biological Chemistry 283(11):7135–7144

    Article  Google Scholar 

  22. Berro J, Sirotkin V, Pollard TD (2010) Mathematical modeling of endocytic actin patch kinetics in fission yeast: disassembly requires release of actin filament fragments. Molecular biology of the cell 21(16):2905–2915

    Article  Google Scholar 

  23. Biedermann J, Ullrich A, Schoneberg J, Noe F (2015) ReaDDyMM: Fast Interacting Particle Reaction-Diffusion Simulations Using Graphical Processing Units. Biophysj 108(3):457–461

    Article  Google Scholar 

  24. Blanchoin L, Pollard TD (1998) Interaction of actin monomers with acanthamoebaactophorin (adf/cofilin) and profilin. Journal of Biological Chemistry 273(39):25,106–25,111

    Article  Google Scholar 

  25. Blinov ML, Schaff JC, Vasilescu D, Moraru II, Bloom JE, Loew LM (2017) Compartmental and Spatial Rule-Based Modeling with Virtual Cell. Biophysj 113(7):1365–1372

    Article  Google Scholar 

  26. Blood PD, Voth GA (2006) Direct observation of bin/amphiphysin/rvs (bar) domain-induced membrane curvature by means of molecular dynamics simulations. Proceedings of the National Academy of Sciences 103(41):15,068–15,072

    Article  Google Scholar 

  27. Boeke D, Trautmann S, Meurer M, Wachsmuth M, Godlee C, Knop M, Kaksonen M (2014) Quantification of cytosolic interactions identifies Ede1 oligomers as key organizers of endocytosis. Molecular systems biology 10:756

    Article  Google Scholar 

  28. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, ACM, p 84

    Google Scholar 

  29. Bradley R, Radhakrishnan R (2013) Coarse-grained models for protein-cell membrane interactions. Polymers 5(3):890–936

    Article  Google Scholar 

  30. Broder DH, Pogliano K (2006) Forespore engulfment mediated by a ratchet-like mechanism. Cell 126(5):917–928

    Article  Google Scholar 

  31. Brown DA, Rose JK (1992) Sorting of gpi-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68(3):533–544

    Article  Google Scholar 

  32. Bugyi B, Carlier MF (2010) Control of actin filament treadmilling in cell motility. Annual review of biophysics 39:449–470

    Article  Google Scholar 

  33. Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of theoretical biology 26(1):61IN777–76IN881

    Article  Google Scholar 

  34. Carlsson A (2003) Growth velocities of branched actin networks. Biophysical journal 84(5):2907–2918

    Article  Google Scholar 

  35. Carlsson A (2006) Stimulation of actin polymerization by filament severing. Biophysical journal 90(2):413–422

    Article  Google Scholar 

  36. Carlsson A (2007) Disassembly of actin networks by filament severing. New Journal of Physics 9(11):418

    Article  Google Scholar 

  37. Carlsson A, Wear M, Cooper J (2004) End versus side branching by arp2/3 complex. Biophysical journal 86(2):1074–1081

    Article  Google Scholar 

  38. Carlsson AE (2001) Growth of branched actin networks against obstacles. Biophysical journal 81(4):1907–1923

    Article  Google Scholar 

  39. Carlsson AE (2010) Actin dynamics: from nanoscale to microscale. Annual review of biophysics 39:91–110

    Article  Google Scholar 

  40. Carlsson AE (2018) Membrane bending by actin polymerization. Current opinion in cell biology 50:1–7

    Article  Google Scholar 

  41. Carmo Md (1993) Differential geometry of curves and surfaces. 1976. Prentice-Hall, Englewood Cliffs, New Jersey) Rehsteiner, F and Rewker, HJ Collision free five axis milling of twisted ruled surface Ann CIRP 42(1):457–461

    Google Scholar 

  42. Chabanon M, Stachowiak JC, Rangamani P (2017) Systems biology of cellular membranes: a convergence with biophysics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 9(5)

    Google Scholar 

  43. Chen Z, Mao Y, Yang J, Zhang T, Zhao L, Yu K, Zheng M, Jiang H, Yang H (2014) Characterizing the binding of annexin v to a lipid bilayer using molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics 82(2):312–322

    Article  Google Scholar 

  44. Collins A, Warrington A, Taylor KA, Svitkina T (2011) Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Current Biology 21(14):1167–1175

    Article  Google Scholar 

  45. Cooper JA, Walker SB, Pollard TD (1983) Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. Journal of muscle research and cell motility 4(2):253–262

    Article  Google Scholar 

  46. Courtemanche N, Pollard TD (2013) Interaction of profilin with the barbed end of actin filaments. Biochemistry 52(37):6456–6466

    Article  Google Scholar 

  47. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophysical journal 77(6):3363–3370

    Article  Google Scholar 

  48. Damke H, Baba T, Warnock DE, Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. The Journal of cell biology 127(4):915–934

    Article  Google Scholar 

  49. Damke H, Baba T, van der Bliek AM, Schmid SL (1995) Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. The Journal of Cell Biology 131(1):69–80

    Article  Google Scholar 

  50. Daste F, Walrant A, Holst MR, Gadsby JR, Mason J, Lee JE, Brook D, Mettlen M, Larsson E, Lee SF, Lundmark R, Gallop JL (2017) Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature. The Journal of Cell Biology pp jcb.201704,061–21

    Google Scholar 

  51. Dawson JC, Legg JA, Machesky LM (2006) Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends in cell biology 16(10):493–498

    Article  Google Scholar 

  52. Dayel MJ, Akin O, Landeryou M, Risca V, Mogilner A, Mullins RD (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS biology 7(9):e1000,201

    Article  Google Scholar 

  53. Decuzzi P, Ferrari M (2008) The receptor-mediated endocytosis of nonspherical particles. Biophysical journal 94(10):3790–3797

    Article  Google Scholar 

  54. Derényi I, Jülicher F, Prost J (2002) Formation and interaction of membrane tubes. Physical review letters 88(23):238,101

    Article  Google Scholar 

  55. Deserno M (2009) Mesoscopic membrane physics: concepts, simulations, and selected applications. Macromolecular rapid communications 30(9–10):752–771

    Article  Google Scholar 

  56. Deuling H, Helfrich W (1976) Red blood cell shapes as explained on the basis of curvature elasticity. Biophysical journal 16(8):861–868

    Article  Google Scholar 

  57. Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC, Sim R, Wiharto PA, Galbraith KA, Madhavarapu S, et al (2009) Golph3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the golgi to promote budding. Cell 139(2):337–351

    Article  Google Scholar 

  58. Diz-Muñoz A, Fletcher DA, Weiner OD (2013) Use the force: membrane tension as an organizer of cell shape and motility. Trends in cell biology 23(2):47–53

    Article  Google Scholar 

  59. Dmitrieff S, Nédélec F (2015) Membrane mechanics of endocytosis in cells with turgor. PLoS computational biology 11(10):e1004,538

    Article  Google Scholar 

  60. Döbereiner H (2000) Fluctuating vesicle shapes. John Wiley & Sons, New York pp 149–168

    Chapter  Google Scholar 

  61. Duman JG, Pathak NJ, Ladinsky MS, McDonald KL, Forte JG (2002) Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells. Journal of cell science 115(6):1251–1258

    Google Scholar 

  62. Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P (2005) AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics (Oxford, England) 21(11):2714–2721

    Article  Google Scholar 

  63. Engqvist-Goldstein ÅE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annual review of cell and developmental biology 19(1):287–332

    Article  Google Scholar 

  64. Faini M, Beck R, Wieland FT, Briggs JA (2013) Vesicle coats: structure, function, and general principles of assembly. Trends in cell biology 23(6):279–288

    Article  Google Scholar 

  65. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  Google Scholar 

  66. Frolov VA, Lizunov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J (2003) Shape bistability of a membrane neck: a toggle switch to control vesicle content release. Proceedings of the National Academy of Sciences 100(15):8698–8703

    Article  Google Scholar 

  67. Fujiwara I, Vavylonis D, Pollard TD (2007) Polymerization kinetics of adp-and adp-pi-actin determined by fluorescence microscopy. Proceedings of the National Academy of Sciences 104(21):8827–8832

    Article  Google Scholar 

  68. Futaki S, Nakase I, Tadokoro A, Takeuchi T, Jones AT (2007) Arginine-rich peptides and their internalization mechanisms

    Google Scholar 

  69. Gaidarov I, Chen Q, Falck JR, Reddy KK, Keen JH (1996) A functional phosphatidylinositol 3, 4, 5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor ap-2 α subunit. implications for the endocytic pathway. Journal of Biological Chemistry 271(34):20,922–20,929

    Article  Google Scholar 

  70. Gawrisch K, Soubias O (2008) Structure and dynamics of polyunsaturated hydrocarbon chains in lipid bilayers – significance for gpcr function. Chemistry and physics of lipids 153(1):64–75

    Article  Google Scholar 

  71. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(5671):743–746

    Article  Google Scholar 

  72. Gomez M, Moulton DE, Vella D (2016) Critical slowing down in purely elastic ‘snap-through’ instabilities. Nat Phys 13:142

    Article  Google Scholar 

  73. Goode BL, Eskin JA, Wendland B (2015) Actin and endocytosis in budding yeast. Genetics 199(2):315–358

    Article  Google Scholar 

  74. Grimmer S, van Deurs B, Sandvig K (2002) Membrane ruffling and macropinocytosis in a431 cells require cholesterol. Journal of cell science 115(14):2953–2962

    Google Scholar 

  75. Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by ω-3 polyunsaturated lipids. Proceedings of the National Academy of Sciences of the United States of America 103(13):4888–4893

    Article  Google Scholar 

  76. Guha A, Sriram V, Krishnan K, Mayor S (2003) Shibire mutations reveal distinct dynamin-independent and-dependent endocytic pathways in primary cultures of drosophila hemocytes. Journal of Cell Science 116(16):3373–3386

    Article  Google Scholar 

  77. Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23(4):628–638

    Article  Google Scholar 

  78. van Gunsteren WF, Daura X, Hansen N, Mark AE, Oostenbrink C, Riniker LJ Sereina andnSmith (2018) Validation of molecular simulation: An overview of issues. Angew Chem Int Ed 57(4):884–902

    Google Scholar 

  79. Hansen CG, Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. Journal of cell science 122(11):1713–1721

    Article  Google Scholar 

  80. Hassinger JE, Oster G, Drubin DG, Rangamani P (2017) Design principles for robust vesiculation in clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences 114(7):E1118–E1127

    Article  Google Scholar 

  81. He X, Lin M, Sha B, Feng S, Shi X, Qu Z, Xu F (2015) Coarse-grained molecular dynamics studies of the translocation mechanism of polyarginines across asymmetric membrane under tension. Scientific reports 5

    Google Scholar 

  82. Hedger G, Sansom MS (2016) Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes 1858(10):2390–2400

    Article  Google Scholar 

  83. Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12):693–703

    Article  Google Scholar 

  84. Heuser J, Reese T (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. The Journal of cell biology 57(2):315–344

    Article  Google Scholar 

  85. Hinrichsen L, Meyerholz A, Groos S, Ungewickell EJ (2006) Bending a membrane: how clathrin affects budding. Proceedings of the National Academy of Sciences 103(23):8715–8720

    Article  Google Scholar 

  86. Hochmuth RM, Mohandas N, Blackshear P (1973) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophysical journal 13(8):747–762

    Article  Google Scholar 

  87. Humphrey W, Dalke A, Schulten K (1996) Vmd: visual molecular dynamics. Journal of molecular graphics 14(1):33–38

    Article  Google Scholar 

  88. Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. Journal of the american chemical society 136(41):14,554–14,559

    Article  Google Scholar 

  89. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by bar and f-bar proteins. Developmental cell 9(6):791–804

    Article  Google Scholar 

  90. Ivanov AI (2008) Exocytosis and endocytosis. Springer

    Google Scholar 

  91. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. The Journal of Physical Chemistry B 109(7):2469–2473

    Article  Google Scholar 

  92. Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annual review of biochemistry 68(1):863–911

    Article  Google Scholar 

  93. Janson ME, Loughlin R, Loiodice I, Fu C, Brunner D, Nedelec FJ, Tran PT (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128(2):357–368

    Article  Google Scholar 

  94. Jégou A, Niedermayer T, Orbán J, Didry D, Lipowsky R, Carlier MF, Romet-Lemonne G (2011) Individual actin filaments in a microfluidic flow reveal the mechanism of atp hydrolysis and give insight into the properties of profilin. PLoS biology 9(9):e1001,161

    Article  Google Scholar 

  95. Jenkins J (1977) Static equilibrium configurations of a model red blood cell. Journal of mathematical biology 4(2):149–169

    Article  MATH  Google Scholar 

  96. Jung G, Wu X, Hammer JA (1996) Dictyostelium mutants lacking multiple classic myosin i isoforms reveal combinations of shared and distinct functions. The Journal of Cell Biology 133(2):305–323

    Article  Google Scholar 

  97. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115(4):475–487

    Article  Google Scholar 

  98. Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell 123(2):305–320

    Article  Google Scholar 

  99. Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nature reviews Molecular cell biology 7(6):404

    Article  Google Scholar 

  100. Khelashvili G, Kollmitzer B, Heftberger P, Pabst G, Harries D (2013) Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. Journal of chemical theory and computation 9(9):3866–3871

    Article  Google Scholar 

  101. Kilmartin J, Adams A (1984) Structural rearrangements of tubulin and actin during the cell cycle of the yeast saccharomyces. The Journal of cell biology 98(3):922–933

    Article  Google Scholar 

  102. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell Jr AD, Pastor RW (2010) Update of the charmm all-atom additive force field for lipids: validation on six lipid types. The journal of physical chemistry B 114(23):7830–7843

    Article  Google Scholar 

  103. Kovtun O, Tillu VA, Ariotti N, Parton RG, Collins BM (2015) Cavin family proteins and the assembly of caveolae. J Cell Sci 128(7):1269–1278

    Article  Google Scholar 

  104. Kozlov M, Leikin S, Chernomordik L, Markin V, Chizmadzhev YA (1989) Stalk mechanism of vesicle fusion. European Biophysics Journal 17(3):121–129

    Article  Google Scholar 

  105. Kreyszig E (1968) Introduction to differential geometry and Riemannian geometry. University of Toronto Press

    Google Scholar 

  106. Kuhn JR, Pollard TD (2007) Single molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins. The Journal of biological chemistry 282(38):28,014–28,024

    Article  Google Scholar 

  107. Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophysical journal 88(2):1120–1133

    Article  Google Scholar 

  108. Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin i can act as a molecular force sensor. Science 321(5885):133–136

    Article  Google Scholar 

  109. Lee HJ, Peterson EL, Phillips R, Klug WS, Wiggins PA (2008) Membrane shape as a reporter for applied forces. Proceedings of the National Academy of Sciences 105(49):19,253–19,257

    Article  Google Scholar 

  110. Lee KI, Pastor RW, Andersen OS, Im W (2013) Assessing smectic liquid-crystal continuum models for elastic bilayer deformations. Chemistry and physics of lipids 169:19–26

    Article  Google Scholar 

  111. Letort G, Politi AZ, Ennomani H, THERY M, Nédélec F, Blanchoin L (2015) Geometrical and mechanical properties control actin filament organization. PLoS computational biology 11(5):e1004,245

    Article  Google Scholar 

  112. Levine ZA, Venable RM, Watson MC, Lerner MG, Shea JE, Pastor RW, Brown FL (2014) Determination of biomembrane bending moduli in fully atomistic simulations. Journal of the American Chemical Society 136(39):13,582–13,585

    Article  Google Scholar 

  113. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    Article  Google Scholar 

  114. Liu J, Kaksonen M, Drubin DG, Oster G (2006) Endocytic vesicle scission by lipid phase boundary forces. Proceedings of the National Academy of Sciences 103(27):10,277–10,282

    Article  Google Scholar 

  115. Liu J, Sun Y, Oster GF, Drubin DG (2010) Mechanochemical crosstalk during endocytic vesicle formation. Current opinion in cell biology 22(1):36–43

    Article  Google Scholar 

  116. Loughlin R, Wilbur JD, McNally FJ, Nedelec FJ, Heald R (2011) Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147(6):1397–1407

    Article  Google Scholar 

  117. Macal CM, North MJ (2010) Tutorial on agent-based modelling and simulation. Journal of Simulation 4(3):151–162

    Article  Google Scholar 

  118. MacDermaid CM, Kashyap HK, DeVane RH, Shinoda W, Klauda JB, Klein ML, Fiorin G (2015) Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes. The Journal of chemical physics 143(24):12B625_1

    Article  Google Scholar 

  119. MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. The journal of physical chemistry B 102(18):3586–3616

    Article  Google Scholar 

  120. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The martini force field: coarse grained model for biomolecular simulations. The journal of physical chemistry B 111(27):7812–7824

    Article  Google Scholar 

  121. Maxfield FR, McGraw TE (2004) Endocytic recycling. Nature reviews Molecular cell biology 5(2):121

    Article  Google Scholar 

  122. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nature reviews Molecular cell biology 8(8):603–612

    Article  Google Scholar 

  123. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature reviews Molecular cell biology 12(8):517

    Article  Google Scholar 

  124. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596

    Article  Google Scholar 

  125. Melikyan G, Kozlov M, Chernomordik L, Markin V (1984) Fission of the bilayer lipid tube. Biochimica et Biophysica Acta (BBA)-Biomembranes 776(1):169–175

    Article  Google Scholar 

  126. Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature cell biology 4(9):691–698

    Article  Google Scholar 

  127. Miller CE, Majewski J, Gog T, Kuhl TL (2005) Characterization of biological thin films at the solid-liquid interface by x-ray reflectivity. Physical review letters 94(23):238,104

    Article  Google Scholar 

  128. Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous t cell trafficking examined in vivo with intravital two-photon microscopy. Proceedings of the National Academy of Sciences 100(5):2604–2609

    Article  Google Scholar 

  129. Mockrin SC, Korn ED (1980) Acanthamoeba profilin interacts with g-actin to increase the rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 19(23):5359–5362

    Article  Google Scholar 

  130. Mogilner A (2006) On the edge: modeling protrusion. Current opinion in cell biology 18(1):32–39

    Article  Google Scholar 

  131. Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophysical journal 71(6):3030–3045

    Article  Google Scholar 

  132. Mogilner A, Oster G (2003) Force generation by actin polymerization ii: the elastic ratchet and tethered filaments. Biophysical journal 84(3):1591–1605

    Article  Google Scholar 

  133. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The martini coarse-grained force field: extension to proteins. Journal of chemical theory and computation 4(5):819–834

    Article  Google Scholar 

  134. Mullins RD, Heuser JA, Pollard TD (1998) The interaction of arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proceedings of the National Academy of Sciences 95(11):6181–6186

    Article  Google Scholar 

  135. Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Monster JL, Picco A, Nedelec F, Kaksonen M, Ries J (2017) Systematic analysis of the molecular architecture of endocytosis reveals a nanoscale actin nucleation template that drives efficient vesicle formation. bioRxiv p 217836

    Google Scholar 

  136. Murtola T, Karttunen M, Vattulainen I (2009) Systematic coarse graining from structure using internal states: Application to phospholipid/cholesterol bilayer. The Journal of chemical physics 131(5):08B601

    Article  Google Scholar 

  137. Naghdi PM (1973) The theory of shells and plates. In: Linear Theories of Elasticity and Thermoelasticity, Springer, pp 425–640

    Google Scholar 

  138. Nagle JF, Jablin MS, Tristram-Nagle S, Akabori K (2015) What are the true values of the bending modulus of simple lipid bilayers? Chemistry and physics of lipids 185:3–10

    Article  Google Scholar 

  139. Nédélec F, Foethke D (2007) Collective Langevin dynamics of flexible cytoskeletal fibers. New Journal of Physics 9(11):427

    Article  Google Scholar 

  140. Neupert W, Brunner M (2002) The protein import motor of mitochondria. Nature reviews Molecular cell biology 3(8):555–565

    Article  Google Scholar 

  141. Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I (2007) Assessing the nature of lipid raft membranes. PLoS computational biology 3(2):e34

    Article  MathSciNet  Google Scholar 

  142. Novak KD, Peterson MD, Reedy MC, Titus MA (1995) Dictyostelium myosin i double mutants exhibit conditional defects in pinocytosis. The Journal of Cell Biology 131(5):1205–1221

    Article  Google Scholar 

  143. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215

    Article  Google Scholar 

  144. Odell GM, Foe VE (2008) An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning. The Journal of Cell Biology 183(3):471–483

    Article  Google Scholar 

  145. Ohkubo YZ, Pogorelov TV, Arcario MJ, Christensen GA, Tajkhorshid E (2012) Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model. Biophysical journal 102(9):2130–2139

    Article  Google Scholar 

  146. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the gromos force-field parameter sets 53a5 and 53a6. Journal of computational chemistry 25(13):1656–1676

    Article  Google Scholar 

  147. Pauleweit S, Nebe JB, Wolkenhauer O (2013) Modelling Molecular Processes by Individual-Based Simulations Applied to Actin Polymerisation

    Google Scholar 

  148. Pearse B (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proceedings of the National Academy of Sciences 73(4):1255–1259

    Article  Google Scholar 

  149. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase c. Nature 345(6272):260–263

    Article  Google Scholar 

  150. Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the brownian ratchet. Biophysical journal 65(1):316–324

    Article  Google Scholar 

  151. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT (2004) Bar domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495–499

    Article  Google Scholar 

  152. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with namd. Journal of computational chemistry 26(16):1781–1802

    Article  Google Scholar 

  153. Picco A, Mund M, Ries J, Nédélec F, Kaksonen M (2015) Visualizing the functional architecture of the endocytic machinery. Elife 4:e04,535

    Article  Google Scholar 

  154. Picco A, Mund M, Ries J, Nédélec F, Kaksonen M (2015) Visualizing the functional architecture of the endocytic machinery. eLife 4

    Google Scholar 

  155. Pinot M, Vanni S, Pagnotta S, Lacas-Gervais S, Payet LA, Ferreira T, Gautier R, Goud B, Antonny B, Barelli H (2014) Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345(6197):693–697

    Article  Google Scholar 

  156. Pollard TD (1986) Rate constants for the reactions of atp-and adp-actin with the ends of actin filaments. The Journal of cell biology 103(6):2747–2754

    Article  Google Scholar 

  157. Pollard TD (2016) Actin and actin-binding proteins. Cold Spring Harbor perspectives in biology 8(8):a018,226

    Article  Google Scholar 

  158. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  Google Scholar 

  159. Pollard TD, Cooper JA (1984) Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23(26):6631–6641

    Article  Google Scholar 

  160. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual review of biophysics and biomolecular structure 29(1):545–576

    Article  Google Scholar 

  161. Poupon V, Girard M, Legendre-Guillemin V, Thomas S, Bourbonniere L, Philie J, Bright NA, McPherson PS (2008) Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proceedings of the National Academy of Sciences 105(1):168–173

    Article  Google Scholar 

  162. Rahimi M, Arroyo M (2012) Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Physical Review E 86(1):011,932

    Article  Google Scholar 

  163. Rangamani P, Steigmann D (2014) Variable tilt on lipid membranes. Proc R Soc A 470(2172):20140,463

    Article  MathSciNet  MATH  Google Scholar 

  164. Rangamani P, Fardin MA, Xiong Y, Lipshtat A, Rossier O, Sheetz MP, Iyengar R (2011) Signaling network triggers and membrane physical properties control the actin cytoskeleton-driven isotropic phase of cell spreading. Biophysical journal 100(4):845–857

    Article  Google Scholar 

  165. Rangamani P, Agrawal A, Mandadapu KK, Oster G, Steigmann DJ (2013) Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomechanics and modeling in mechanobiology pp 1–13

    Google Scholar 

  166. Rangamani P, Benjamini A, Agrawal A, Smit B, Steigmann DJ, Oster G (2014) Small scale membrane mechanics. Biomechanics and modeling in mechanobiology 13(4):697–711

    Article  Google Scholar 

  167. Rangamani P, Mandadap KK, Oster G (2014) Protein-induced membrane curvature alters local membrane tension. Biophysical journal 107(3):751–762

    Article  Google Scholar 

  168. Rangamani P, Xiong GY, Iyengar R (2014) Multiscale modeling of cell shape from the actin cytoskeleton. Progress in molecular biology and translational science 123:143

    Article  Google Scholar 

  169. Ray S, Kassan A, Busija AR, Rangamani P, Patel HH (2016) The plasma membrane as a capacitor for energy and metabolism. American Journal of Physiology-Cell Physiology 310(3):C181–C192

    Article  Google Scholar 

  170. Ringstad N, Gad H, Löw P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P (1999) Endophilin/sh3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24(1):143–154

    Article  Google Scholar 

  171. Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH (2005) Actin and septin ultrastructures at the budding yeast cell cortex. Molecular biology of the cell 16(1):372–384

    Article  Google Scholar 

  172. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between n-wasp and the arp2/3 complex links cdc42-dependent signals to actin assembly. Cell 97(2):221–231

    Article  Google Scholar 

  173. Roux A, Cappello G, Cartaud J, Prost J, Goud B, Bassereau P (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proceedings of the National Academy of Sciences 99(8):5394–5399

    Article  Google Scholar 

  174. Sadiq SK (2016) Reaction–diffusion basis of retroviral infectivity. Phil Trans R Soc A 374(2080):20160,148

    Article  MathSciNet  Google Scholar 

  175. Schoneberg J, Noe F (2013) ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments. PloS one 8(9):e74,261–14

    Article  Google Scholar 

  176. Schöneberg J, Heck M, Hofmann KP, Noé F (2014) Explicit spatiotemporal simulation of receptor-g protein coupling in rod cell disk membranes. Biophysical journal 107(5):1042–1053

    Article  Google Scholar 

  177. Schöneberg J, Ullrich A, Noé F (2014) Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC biophysics 7(1):11

    Article  Google Scholar 

  178. Schoneberg J, Lehmann M, Ullrich A, Posor Y, Lo WT, Lichtner G, Schmoranzer J, Haucke V, Noé F (2017) Lipid-mediated px-bar domain recruitment couples local membrane constriction to endocytic vesicle fission. Nature communications 8:15,873

    Article  Google Scholar 

  179. Schuler LD, Daura X, Van Gunsteren WF (2001) An improved gromos96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry 22(11):1205–1218

    Article  Google Scholar 

  180. Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin a visualized in living cells. The Journal of cell biology 139(5):1137–1155

    Article  Google Scholar 

  181. Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Physical Review A 44(2):1182

    Article  Google Scholar 

  182. Seifert U, Shillcock J, Nelson P (1996) Role of bilayer tilt difference in equilibrium membrane shapes. Physical review letters 77(26):5237

    Article  Google Scholar 

  183. Shahbaaz M, Amir M, Rahman S, Mustafa Hasan G, Dohare R, Bisetty K, Ahmad F, Kim J, Hassan MI (2017) Structural insights into rab21 gtpase activation mechanism by molecular dynamics simulations. Molecular Simulation pp 1–11

    Google Scholar 

  184. Sheetz MP (2001) Opinion: Cell control by membrane-cytoskeleton adhesion. Nature reviews Molecular cell biology 2(5):392

    Article  Google Scholar 

  185. Shi Q, Izvekov S, Voth GA (2006) Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. The Journal of Physical Chemistry B 110(31):15,045–15,048

    Article  Google Scholar 

  186. Shityakov S, Salvador E, Pastorin G, Förster C (2015) Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. International journal of nanomedicine 10:1703

    Article  Google Scholar 

  187. e Silva MS, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH (2011) Active multistage coarsening of actin networks driven by myosin motors. Proceedings of the National Academy of Sciences 108(23):9408–9413

    Article  Google Scholar 

  188. Silvius JR (2003) Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochimica et Biophysica Acta (BBA)-Biomembranes 1610(2):174–183

    Article  Google Scholar 

  189. Simons K, Ikonen E (1997) Functional rafts in cell membranes. nature 387(6633):569

    Article  Google Scholar 

  190. Simons K, Vaz WLC (2004) MODEL SYSTEMS, LIPID RAFTS, AND CELL MEMBRANES 1. Annu Rev Biophys Biomol Struct 33(1):269–295

    Article  Google Scholar 

  191. Simunovic M, Voth GA (2015) Membrane tension controls the assembly of curvature-generating proteins. Nature communications 6

    Google Scholar 

  192. Simunovic M, Srivastava A, Voth GA (2013) Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proceedings of the National Academy of Sciences 110(51):20,396–20,401

    Article  Google Scholar 

  193. Simunovic M, Manneville JB, Renard HF, Evergren E, Raghunathan K, Bhatia D, Kenworthy AK, Voth GA, Prost J, McMahon HT, et al (2017) Friction mediates scission of tubular membranes scaffolded by bar proteins. Cell 170(1):172–184

    Article  Google Scholar 

  194. Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD (2010) Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Molecular Biology of the Cell 21(16):2894–2904

    Article  Google Scholar 

  195. Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD (2010) Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Molecular biology of the cell 21(16):2894–2904

    Article  Google Scholar 

  196. Smith AE, Zhang Z, Thomas C (2000) Wall material properties of yeast cells: Part 1. cell measurements and compression experiments. Chemical Engineering Science 55(11):2031–2041

    Article  Google Scholar 

  197. Sneddon MW, Faeder JR, Emonet T (2010) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nature methods 8(2):177–183

    Article  Google Scholar 

  198. Sochacki KA, Dickey AM, Strub MP, Taraska JW (2017) Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 12:517–41

    Google Scholar 

  199. Stachowiak MR, Laplante C, Chin HF, Guirao B, Karatekin E, Pollard TD, O’Shaughnessy B (2014) Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast. Developmental Cell 29(5):547–561

    Article  Google Scholar 

  200. Stansfeld PJ, Sansom MS (2011) From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. Journal of Chemical Theory and Computation 7(4):1157–1166

    Article  Google Scholar 

  201. Steigmann D (1999) Fluid films with curvature elasticity. Archive for Rational Mechanics and Analysis 150(2):127–152

    Article  MathSciNet  MATH  Google Scholar 

  202. Steigmann D (1999) On the relationship between the cosserat and kirchhoff-love theories of elastic shells. Mathematics and Mechanics of Solids 4(3):275–288

    Article  MathSciNet  MATH  Google Scholar 

  203. Steigmann DJ (2013) A model for lipid membranes with tilt and distension based on three-dimensional liquid crystal theory. International Journal of Non-Linear Mechanics 56:61–70

    Article  Google Scholar 

  204. Steigmann DJ (2018) Mechanics and physics of lipid bilayers. In: The Role of Mechanics in the Study of Lipid Bilayers, Springer, pp 1–61

    Google Scholar 

  205. Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. The Journal of cell biology 96(1):1–27

    Article  Google Scholar 

  206. Stenmark H (2009) Rab gtpases as coordinators of vesicle traffic. Nature reviews Molecular cell biology 10(8):513–525

    Article  Google Scholar 

  207. Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Developmental cell 11(1):33–46

    Article  Google Scholar 

  208. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a snare complex involved in synaptic exocytosis at 2.4 å resolution. Nature 395(6700):347–353

    Article  Google Scholar 

  209. Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. The Journal of cell biology 145(5):1009–1026

    Article  Google Scholar 

  210. Tayebi L, Ma Y, Vashaee D, Chen G, Sinha SK, Parikh AN (2012) Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. Nature materials 11(12):1074–1080

    Article  Google Scholar 

  211. Templer R, Seddon J, Warrender N (1994) Measuring the elastic parameters for inverse bicontinuous cubic phases. Biophysical chemistry 49(1):1–12

    Article  Google Scholar 

  212. Tieleman DP, Marrink SJ, Berendsen HJ (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1331(3):235–270

    Article  Google Scholar 

  213. Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu Z, Monticelli L (2006) Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins. Journal of Physics: Condensed Matter 18(28):S1221

    Google Scholar 

  214. Tristram-Nagle S, Zhang R, Suter R, Worthington C, Sun W, Nagle J (1993) Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophysical journal 64(4):1097–1109

    Article  Google Scholar 

  215. Ullrich A, Böhme MA, Schöneberg J, Depner H, Sigrist SJ, Noé F (2015) Dynamical organization of syntaxin-1a at the presynaptic active zone. PLoS computational biology 11(9):e1004,407

    Article  Google Scholar 

  216. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) Gromacs: fast, flexible, and free. Journal of computational chemistry 26(16):1701–1718

    Article  Google Scholar 

  217. Vavylonis D, Wu JQ, Hao S, O’Shaughnessy B, Pollard TD (2008) Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast. Science 319(5859):97–100

    Article  Google Scholar 

  218. Victor BL, Lousa D, Antunes JM, Soares CM (2015) Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion peptide with a membrane bilayer. Journal of chemical information and modeling 55(4):795–805

    Article  Google Scholar 

  219. Walani N, Torres J, Agrawal A (2015) Endocytic proteins drive vesicle growth via instability in high membrane tension environment. Proceedings of the National Academy of Sciences 112(12):E1423–E1432

    Google Scholar 

  220. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. Journal of computational chemistry 25(9):1157–1174

    Article  Google Scholar 

  221. Wang X, Carlsson AE (2017) A master equation approach to actin polymerization applied to endocytosis in yeast. PLoS computational biology 13(12):e1005,901

    Article  Google Scholar 

  222. Wang X, Galletta BJ, Cooper JA, Carlsson AE (2016) Actin-regulator feedback interactions during endocytosis. Biophysical journal 110(6):1430–1443

    Article  Google Scholar 

  223. Wang Y, Noid W, Liu P, Voth GA (2009) Effective force coarse-graining. Physical Chemistry Chemical Physics 11(12):2002–2015

    Article  Google Scholar 

  224. Wang YL (1985) Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. The Journal of cell biology 101(2):597–602

    Article  Google Scholar 

  225. Wegner A, Engel J (1975) Kinetics of the cooperative association of actin to actin filament. Biophysical chemistry 3(3):215–225

    Article  Google Scholar 

  226. Wiener M, Suter R, Nagle J (1989) Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophysical journal 55(2):315–325

    Article  Google Scholar 

  227. Wu JQ, Pollard TD (2005) Counting cytokinesis proteins globally and locally in fission yeast. Science 310(5746):306–310

    Article  Google Scholar 

  228. Wu JQ, Pollard TD (2005) Counting cytokinesis proteins globally and locally in fission yeast. Science 310(5746):310–314

    Article  Google Scholar 

  229. Xiong Y, Rangamani P, Fardin MA, Lipshtat A, Dubin-Thaler B, Rossier O, Sheetz MP, Iyengar R (2010) Mechanisms controlling cell size and shape during isotropic cell spreading. Biophysical journal 98(10):2136–2146

    Article  Google Scholar 

  230. Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Molecular biology of the cell 16(2):964–975

    Article  Google Scholar 

  231. Yin Y, Arkhipov A, Schulten K (2009) Simulations of membrane tubulation by lattices of amphiphysin n-bar domains. Structure 17(6):882–892

    Article  Google Scholar 

  232. Yu H, Schulten K (2013) Membrane sculpting by f-bar domains studied by molecular dynamics simulations. PLoS computational biology 9(1):e1002,892

    Article  Google Scholar 

  233. Zemel A, Ben-Shaul A, May S (2008) Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides. The Journal of Physical Chemistry B 112(23):6988–6996

    Article  Google Scholar 

  234. Zhang B, Feng X, Yin H, Ge Z, Wang Y, Chu Z, Raabova H, Vavra J, Cigler P, Liu R, et al (2017) Anchored but not internalized: shape dependent endocytosis of nanodiamond. Scientific Reports 7

    Google Scholar 

  235. Zimmerberg J, Gawrisch K (2006) The physical chemistry of biological membranes. Nature chemical biology 2(11):564–567

    Article  Google Scholar 

  236. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nature reviews Molecular cell biology 7(1):9–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge discussions with their many colleagues over the years that have contributed to the development of ideas in this chapter. They would also like to acknowledge the following grants: NSF PHY1505017, ARO W911NF-16-1-041, ONR N00014-17-1-2628 to PR, FISP G-3081 to RV, and an Arnold O. Beckman Postdoctoral Fellowship to MA. They would also like to acknowledge members of the Rangamani and Drubin labs for their feedback on the manuscript. J.S. acknowledges a Moore/Sloan Data science Fellowship from the Siebel Stem Cell Institute–UC Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Rangamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasan, R., Akamatsu, M., Schöneberg, J., Rangamani, P. (2018). Intracellular Membrane Trafficking: Modeling Local Movements in Cells. In: Stolarska, M., Tarfulea, N. (eds) Cell Movement. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96842-1_9

Download citation

Publish with us

Policies and ethics