Skip to main content
Log in

Modern Aspects of Studying the Role of Phyllophagous Insects in Forest Communities

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper presents a review of publications on the relationship between phyllophagous insects and the forest communities in the current ecological situation, when ongoing climate changes, manifested primarily in an increase in the air temperature and a change in the precipitation amount and distribution, affect all processes in natural communities. Changes in the ranges of many plants and animal species are observed moving up northwards and up in altitude. The spring phenophases come earlier, the autumn ones come later, the vegetation period lengthens, and the biomass of terrestrial plants increases. Such phenomena, together with changes in climatic parameters, affect herbivorous animals, which include insects with various food specializations and different life cycles. As before, despite the growing number of observations in different parts of the earth, there remains a lot of uncertainty about how individual plant and insect species and their functional groups function under the changing external conditions. It is emphasized that it is necessary to continue long-term studies in specific natural conditions in order to more accurately determine the reaction of the participants in the interactions to local climate changes and understand what the forestry strategy should be in the current and the situation predicted for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ayres, M.P. and Lombardero, M.J., Assessing the consequences of global change for forest disturbance from herbivores and pathogens, Sci. Total Environ., 2000, vol. 262, no. 3, pp. 263–286.

    Article  CAS  PubMed  Google Scholar 

  2. Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J., and Sitch, S., Responses of spring phenology to climate change, New Phytol., 2004, vol. 162, pp. 295–309.

    Article  Google Scholar 

  3. Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K, Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., and Whittaker, J.B., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores, Global Change Biol., 2002, vol. 8, no. 1, pp. 1–16.

    Article  Google Scholar 

  4. Baranchikov, Y.N., Kondakov, Y.P., and Petrenko, E.S., Catastrophic outbreaks of mass reproduction of the Siberian silkworm), in Bezopasnost’ Rossii. Regional’nye problemy bezopasnosti. Krasnoyarskii krai (Security of Russia. Regional Security Issues. Krasnoyarsk Region), Moscow: Znanie, 2001, pp. 146–167.

  5. Both, C., van Asch, M., Bijlsma, R.-G., van den Burg, A.-B., and Visser, M.-E., Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?, J. Anim. Ecol., 2009, vol. 78, pp. 73–83.

    Article  PubMed  Google Scholar 

  6. Both, C., van Asch, M., Bijlsma, R.-G., van den Burg, A.-B., and Visser, M.-E., Climate change and unequal phenological changes across four trophic levels: constraints or adaptations?, J. Anim. Ecol., 2009, vol. 78, pp. 73–83.

    Article  PubMed  Google Scholar 

  7. Buse, A. and Good, J.E.G., Synchronization of larval emergence in winter moth (Operophtera brumata L.) and bud burst in pedunculate oak (Quercus robur L.) under simulated climate change, Ecol. Entomol., 1996, vol. 21, no. 4, pp. 335–343.

    Article  Google Scholar 

  8. Buse, A., Good, J.E.G., Dury, S., and Perrins, C.M., Effects of elevated temperature and carbone dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the winter moth (Operophtera brumata L.), Funct. Ecol., 1998, vol. 12, no. 5, pp. 742–749.

    Article  Google Scholar 

  9. Carlisle, A., Brown, A.H.F., and White, E.J., Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak woodland, J. Ecol., 1966, vol. 54, no. 1, pp. 65–85.

    Article  Google Scholar 

  10. Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., and Schwartz, M.D., Shifting plant phenology in response to global change, Trends Ecol. Evol., 2007, vol. 22, no. 7, pp. 357–365.

    Article  PubMed  Google Scholar 

  11. Cornelissen, T., Climate change and its effects on terrestrial insects and herbivory patterns, Neotrop. Entomol., 2011, vol. 40, no. 2, pp. 155–163.

    Article  CAS  PubMed  Google Scholar 

  12. Crawley, M.J., Herbivory: the dynamics of animal-plant interactions, Stud. Ecol., 1983, vol. 10.

    Google Scholar 

  13. Ekholm, A., Temporal Asynchrony due to Climate Change and its Impact on Host–Herbivore–Predator Interactions. Introductory Research Essay, Uppsala: Dep. Ecol., 2017.

    Google Scholar 

  14. Grodnitskaya, I.D. and Bogorodskaya, A.V., Biological activity of soils in plantations damaged by the Siberian silkworm, in Lesnye statsionarnye issledovaniya: metody, rezul’taty, perspektivy (Forest Stationary Research: Methods, Results, Prospects), Tula, 2001, pp. 299–302.

  15. Grodnitskii, D.L., Raznobarskii, V.G., and Shabalina, O.M., Monitoring the condition of silkworms, in Lesnye statsionarnye issledovaniya: metody, rezul’taty, perspektivy (Forest Stationary Research: Methods, Results, Prospects), Tula, 2001, pp. 268–270.

  16. Harrington, R., Woiwod, I., and Sparks, T., Climate change and trophic interactions, Trends Ecol. Evol., 1999, vol. 14, no. 4, pp. 146–150.

    Article  CAS  PubMed  Google Scholar 

  17. Hudges, L., Biological consequences of global warming: is the signal already apparent?, Trends Ecol. Evol., 2000, vol. 15, no. 2, pp. 56–61.

    Article  Google Scholar 

  18. Ierusalimov, E.N., Zoogennaya defoliatsiya i lesnoe soobshchestvo (Zoogenic Defoliation and the Forest Community), Moscow: KMK, 2004.

  19. Il’inskii A.I., Tropin I.V., Nadzor, uchet i prognoz massovykh razmnozhenii khvoe- i listogryzushchikh nasekomykh v lesakh SSSR (Monitoring, Estimation and Forecast of the Needle- and Leaf-Eating Insects Outbreaks in Forests of the USSR), Moscow: Lesn. Prom-st., 1965.

  20. Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., Kondakov, Y.P., and Kiselev, V.V., Dinamika chislennosti lesnykh nasekomykh (Population dynamics of forest insects), Novosibirsk: Nauka, 1984.

  21. Isaev, A.S., Ovchinnikova, T.M., Pal’nikova, E.N., Sukhovol’skii, V.G., and Tarasova, O.V., Assessment of “forest—insect” relations in forests of boreal zone under probable climatic changes, Lesovedenie, 1999, no. 6, pp. 39–44.

  22. Isaev, A.S., Khlebopros, R.G., Kondakov, Y.P., Nedorezov, L.V., Kiselev, V.V., and Sukhovol’skii, V.G., Populyatsionnaya dinamika lesnykh nasekomykh (Population Dynamics of the Forest Insects), Moscow: Nauka, 2001.

  23. Kirichenko N.I., Baranchikov Y.N., Krasnoshchekov Y.N., Akulov E.N., Additional inputs of carbon and ash elements in the centers of mass reproduction of the Siberian silkworm, Mezhdunarodnaya Nauchnaya konferentsiya “Monitoring sostoyaniya lesnykh i urbo-ekosistem”. Tezisy dokladov (Int. Sci. Conf. “Monitoring of the State of Forest and Urban Ecosystems”. Abstracts of Papers), Moscow: Mosk. Gos. Univ. Lesa, 2002, pp. 83–85

  24. Kirichenko, N.I. and Baranchikov, Y.N., Withdrawn food rate for the larvae of Siberian moth on the conifers of Siberia, Contemp. Probl. Ecol., 2008, vol. 1, pp. 543–548.

    Article  Google Scholar 

  25. Kolb, T.E., Fettig, C.J., Ayres, M.P., Bentz, B.J., Hicke, J.A., Mathiasen, R., Stewart, J.E., and Weed, A.S., Observed and anticipated impacts of drought on forest insects and diseases in the United States, For. Ecol. Manage., 2016, vol. 380, pp. 321–334.

    Article  Google Scholar 

  26. Kolomiets, N.G., Siberian silkworm – a pest of the lowland taiga, in Trudy po lesnomu khozyaistvu Zapadnoi Sibiri (Proceedings on Forestry in Western Siberia), Novosibirsk: Zap.-Sib. Otd. VNITOLES, 1957, vol. 3, pp. 61–76.

  27. Kondakov, Y.P., Regularities of the outbreaks of Siberian silk moth, in Ekologiya populyatsii lesnykh zhivotnykh Sibiri (Population Ecology of the Forest Animals in Siberia), Novosibirsk: Nauka, 1974, pp. 206–265.

  28. Kruger, E.L., Volin, J.C., and Lindroth, R.L., Influences of atmospheric CO2 enrichment on the responses of sugar maple and trembling aspen to defoliation, New Phytol., 1998, vol. 140, no. 1, pp. 85–94.

    Article  Google Scholar 

  29. Landsberg, J. and Smith, M.S., A functional scheme for predicting the outbreak potential of herbivorous insects under global atmospheric change, Aust. J. Bot., 1992, vol. 40, nos. 4–5, pp. 565–577.

    Article  Google Scholar 

  30. Leckey, E.H., Smith, D.M., Nufio, C.R., and Fornash, K.F., Oak-insect herbivore interactions along a temperature and precipitation gradient, Acta Oecol., 2014, vol. 61, pp. 1–8.

    Article  Google Scholar 

  31. Lin, D., Xia, J., and Wan, S., Climate warming and biomass accumulation of terrestrial plants: a meta-analysis, New Phytol., 2010, vol. 188, no. 1, pp. 187–198.

    Article  PubMed  Google Scholar 

  32. Lyamtsev, N.I. and Isaev, A.S., Modification of gypsy moth outbreaks related to ecological-climatic situation, Lesovedenie, 2005, no. 5, pp. 3–9.

  33. Lyamtsev, N.I., Isaev, A.S., and Zukert, N.V., Effects of climate and weather on population dynamics of gypsy moth in European part of Russia, Lesovedenie, 2000, no. 1, pp. 62–67.

  34. Mamaev, V.V., Rubtsov, V.V., and Utkina, I.A., Effects of oak crown defoliation on growth activity of absorptive roots, Lesovedenie, 2001, no. 5, pp. 43–49.

  35. Mamaev, V.V., Rubtsov, V.V., and Utkina, I.A., Seasonal dynamics of growth activity in absorbing roots of trees in floodplain oak forests under repeated defoliation, Lesovedenie, 2002, no. 5, pp. 39–43.

  36. Marciniak, A., Climate change effects on eruptive forest insects: a review and synthesis of empirical evidence, 2012. http://dx.doi.org/. Cited June 1, 2022.https://doi.org/10.14288/1.0075624

  37. Mattson, W.J. and Addy, N.D., Phytophagous insects as regulators of forest primary production, Science, 1975, vol. 190, pp. 515–522.

    Article  Google Scholar 

  38. Metz, R. and Tobin, P.C., Effects of temperature and host plant fragmentation on Lymantria dispar population growth along its expanding population front, Biol. Invasions, 2022, vol. 24, pp. 2679–2691.

    Article  Google Scholar 

  39. Mozolevskaya, E.G., Rubtsov, V.V., and Utkina, I.A., Evaluation of the role of dendrophilous insects in forest biogeocenoses, XX Chteniya pamyati akademika V.N. Sukacheva “Nasekomye v lesnykh biotsenozakh” (XIX Readings in the Memory of Academician V.N. Sukachev “Insects in Forest Biocenoses”), Moscow: KMK, 2004, pp. 5–31.

    Google Scholar 

  40. Musolin, D.L. and Saulich, A.K., Responses of insects to the current climate changes: from physiology and behavior to range shifts, Entomol. Rev., 2012, vol. 92, no. 7, pp. 715–740.

    Article  Google Scholar 

  41. Nastavlenie po nadzoru, uchetu i prognozu khvoe- i listogryzushchikh nasekomykh v Evropeiskoi chasti RSFSR (Manual on the Supervision, Accounting and Forecast of Needle- and Leaf-Eating Insects in the European Part of the RSFSR), Minleskhoz RSFSR, 1988.

  42. Parmesan, C., Ecological and evolutionary responses to recent climate change, Ann. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 637–669.

    Article  Google Scholar 

  43. Pearse, I.S. and Hipp, A.L., Global patterns of leaf defenses in oak species, Evolution, 2012, vol. 66, no. 7, pp. 2272–2286.

    Article  PubMed  Google Scholar 

  44. Portalier, S., Candau, J.-N., and Lutscher, F., A temperature-driven model of phenological mismatch provides insights into the potential impacts of climate change on consumer–resource interactions, Ecography, 2022, vol. 8, p. e06259

    Article  Google Scholar 

  45. Post, E.S., Pedersen, C., Wilmers, C.C., and Forchhammer, M.C., Phenological sequences reveal aggregate life history response to climatic warming, Ecology, 2008, vol. 89, no. 2, pp. 363–370.

    Article  PubMed  Google Scholar 

  46. Pureswaran, D.S., Roques, A., and Battisti, A., Forest insects and climate change, Curr. For. Rep., 2018, vol. 4, no. 2, pp. 35–50.

    Article  Google Scholar 

  47. Rafes, P.F., Mass reproductions of harmful insects as special cases of matter and energy cycle in the forest biogeocenosis, in Zashchita lesa ot vrednykh nasekomykh (Protection of the Forest from Insect Pests), Moscow: Nauka, 1964, pp. 3–57.

  48. Raich, J.W. and Nadelhoffer, K.J., Belowground carbon allocation in forest ecosystems: global trends, Ecology, 1989, vol. 70, no. 5, pp. 1346–1354.

    Article  Google Scholar 

  49. Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H., and Brockerhoff, E.G., Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts, Forestry, 2016, vol. 89, no. 3, pp. 245–252.

    Article  Google Scholar 

  50. Rinker, H.B., Lowman, M.D, Hunter, M.D., Schowalter, T.D., and Fonte, S.J., Literature review: canopy herbivory and soil ecology, the top-down impact of forest processes, Selbyana, 2001, vol. 22, no. 2, pp. 225–231.

    Google Scholar 

  51. Rozhkov, A.S., Khlimankova, E.S., and Stepanchuk, E.S., Vosstanovitel’nye protsessy u khvoinykh pri defoliatsii (Recovery Processes in Conifers During Defoliation), Novosibirsk: Nauka, 1991.

  52. Rubtsov. V.V. and Utkina. I.A., Adaptatsionnye reaktsii duba na defoliatsiyu (Adaptive Feedback to Defoliation of an Oak), Moscow: Grif i K, 2008.

  53. Rubtsov. V.V. and Utkina. I.A., Response of forest phyllophagous insects to climate change, Contemp. Probl. Ecol., 2020, vol. 13, pp. 780–787.

    Article  Google Scholar 

  54. Schwartzberg, E.G., Jamieson, M.A., Raffa, K.F., Reich, P.B., Montgomery, R.A., and Lindroth, R.L., Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees, Oecologia, 2014, vol. 175, no. 3, pp. 1041–1049.

    Article  PubMed  Google Scholar 

  55. Solomou, A.D., Proutsos, N.D., Karetsos, G., and Tsagari, K., Effects of climate change on vegetation in Mediterranean forests: A review, Int. J. Environ., Agric. Biotechnol., 2017, vols. l–2, no. 1.

  56. Stiling, P., Rossi, A.V., Hungate, B., Dijkstra, P., Hinkle, C.R., Knott, W.M. III, and Drake, B., Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack, Ecol. Appl., 1999, vol. 9, no. 1, pp. 240–244.

    CAS  PubMed  Google Scholar 

  57. Tai, A.R. and Carroll, A.L., In the pursuit of synchrony: northward shifts in western spruce budworm outbreaks in a warming environment, Front. For. Global Change, 2022. https://doi.org/10.3389/ffgc.2022.895579

  58. Trotter, R.T., Cobb, N.S., and Whitham, T.G., Herbivory, plant resistance, and climate in the tree ring record: Interactions distort climatic reconstructions, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 15, pp. 10197–10202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Utkina, I.A. and Rubtsov, V.V., Modern ideas about the impact of climate change on interactions of forest trees and phytophagous insects, Lesn. Vestn., 2017, vol. 21, no. 6, pp. 5–12.

    Google Scholar 

  60. Utkina, I.A. and Rubtsov, V.V., Relationship of different species of oak and phyllophages as an object of biogeocenotic research, Lesovedenie, 2021, no. 5, pp. 547–554.

  61. Visser, M.E. and Holleman, L.J.M., Warmer springs disrupt the synchrony of oak and winter moth phenology, Proc. R. Soc. London, 2001, vol. 268, no. 1464, pp. 289–294.

    Article  CAS  Google Scholar 

  62. Vorontsov, A.I., Biologicheskie osnovy zashchity lesa (Biological Basis of Forest Protection), Moscow: Vyssh. Shk., 1960.

  63. Vorontsov, A.I., Patologiya lesa (Forest Pathology), Moscow: Lesn. Prom-st., 1978.

  64. Vorontsov, A.I., Ierusalimov, E.N., and Mozolevskaya, E.G., The role of leaf-eating insects in forest biogeocenosis, Zh. Obshch. Biol., 1967, vol. 28, no. 2, pp. 172–187.

    CAS  PubMed  Google Scholar 

  65. Vorontsov, A.I., Mozolevskaya, E.G., and Sokolova, E.S., Tekhnologiya zashchity lesa (Forest Protection Technology), Moscow: Ekologiya, 1991.

  66. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C, Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F., Ecological responses to recent climate change, Nature, 2002, vol. 416, pp. 389–395.

    Article  CAS  PubMed  Google Scholar 

  67. Williamson, J., The, E., Jucker, T., Brindle, M., Bush, E., Chung, A.Y.C., Parrett, J., Lewis, O.T., Rossiter, S.J., and Slade, E.M., Local-scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic, Funct. Ecol., 2022, vol. 36, pp. 1655–1667.

    Article  Google Scholar 

  68. Zlotin, R.I. and Khodasheva, K.S., Rol’ zhivotnykh v biologicheskom krugovorote lesostepnykh ekosistem (The Role of Animals in the Biological Cycle of Forest-Steppe Ecosystems), Moscow: Nauka, 1974.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Utkina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utkina, I.A., Rubtsov, V.V. Modern Aspects of Studying the Role of Phyllophagous Insects in Forest Communities. Contemp. Probl. Ecol. 16, 1031–1040 (2023). https://doi.org/10.1134/S1995425523070144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523070144

Keywords:

Navigation