Skip to main content
Log in

Impact of Environmental Factors on the Formation of Soil-Mite (Acari) Assemblages on Coastal Marshes of Shokalsky Island, Kara Sea

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

At least 35 species of soil mites inhabit seashore biotopes of Shokalsky Island (73° N) in the Kara Sea, Arctic Ocean. Twenty-six Acari species, including seven dominants, have been registered on a model marine marsh profile near the Pereprava River, and their distribution in soil samples collected at three hypsometric levels was analyzed. The following parameters of the soil samples were determined: salinity, granulometric composition, carbon and nitrogen content, and condition of the plant cover. Overall, the species diversity and total abundance of mites increase from lower to higher marsh levels. CCA ordination made it possible to identify a significant correlation between the abundance of Ameronothrus nigrofemoratus, a typical mycetophagous littoral dweller, and the concentration of chlorides in the soil specimens. The distribution of Svalbardia paludicola, Scutacarus offaliensis, Steneotarsonemus arcticus, and two Arctoseius species is primarily determined by drainage properties of the substrate (these mites prefer sandy grounds). Mites abundant at the upper littoral level primarily depend either on the phytomass content (the majority of species) or on concentrations of the main biogenic elements (Nanorchestes cf. gilli, Eustigmaeus cf. tjumeniensis, and Cheilostigmaeus longisetosus) in the soil samples. The CCA ordination model explains 80.5% of the data dispersion. A comparative analysis of the species structure in mite communities shows that the assemblage inhabiting a high marsh level featuring a well-developed moss layer is the most diverse and distinct. Two acarocoenoses formed under plant associations occupying different marsh levels (ass. Puccinellietum phryganodis and ass. Caricetum subspathaceae) but on similar clayey grounds have the most similarity to each other. Apparently, this is due to the similar duration of seawater inundation periods determined by the drainage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Adam, P., Saltmarsh Ecology, Cambridge: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  2. Babenko, A.B., Springtails (Collembola) in the subpolar landscapes of the Northern Hemisphere, Entomol. Rev., 2018. vol. 98, no. 4, pp. 383–406. https://doi.org/10.1134/S0013873818040012

    Article  Google Scholar 

  3. Babenko, A., and Fjellberg, A., Collembola septentrionale: A Catalogue of Springtails of the Arctic Regions, Moscow: KMK, 2006.

    Google Scholar 

  4. Behan-Pelletier, V.M., Oribatid mite fauna of northern ecosystems: a product of evolutionary adaptations or physiological constraints? Proc. IX Int. Congr. of Acarology “Acarology IX,” Mitchell, R., Horn, D.J., Needham, G.R., and Welbourn, W.C., Eds., Columbus, OH: Ohio Biol. Surv., 1999, vol. 2, pp. 87–105.

  5. Briones, M.J.I., The serendipitous value of soil fauna in ecosystem functioning: the unexplained explained, Front. Environ. Sci., 2018, vol. 6, no. 149, pp. 1–11. https://doi.org/10.3389/fenvs.2018.00149

    Article  Google Scholar 

  6. Byrd, K.B. and Kelly, M., Salt marsh vegetation response to edaphic and topographic changes from upland sedimentation in a Pacific estuary, Wetlands, 2006, vol. 26, pp. 813–829. https://doi.org/10.1672/0277-5212(2006)26[813:SMVRTE] 2.0.CO;2

    Article  Google Scholar 

  7. Byzova, Yu.B., Uvarov, A.V., Gubina, V.G., Zalesskaya, N.T., Zakharov, A.A., Petrova, A.D., Suvorov, A.A., and Vorob’eva, E.G., Pochvennye bespozvonochnye belomorskikh ostrovov Kandalakshinskogo zapovednika (Soil Invertebrates of the White Sea Islands of the Kandalaksha Nature Reserve), Moscow: Nauka, 1986.

  8. Chapman, V.J., Salt Marshes and Salt Deserts of the World, London: Leonard Hill, 1960.

    Google Scholar 

  9. Chernov, Yu.I., Zhizn’ tundry (Living Tundra), Moscow: Mysl’, 1980.

  10. Coulson, S.J., Hodkinson, I.D., Webb, N.R., and Harrison, J.A., Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal, Funct. Ecol., 2002, vol. 16, pp. 353–356. https://doi.org/10.1046/j.1365-2435.2002.00636.x

    Article  Google Scholar 

  11. Coulson, S.J., Convey, P., Aakra, K., Aarvik, L., Ávila-Jiménez, M.L., Babenko, A., Biersma, E.M., Boström, S., Brittain, J.E., Carlsson, A.M., Christoffersen, K., De Smet, W.H., Ekrem, T., Fjellberg, A., Füreder, L., et al., The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya, Soil Biol. Biochem., 2014, vol. 68, pp. 440–470. https://doi.org/10.1016/j.soilbio.2013.10.006

    Article  CAS  Google Scholar 

  12. Erdmann, G., Scheu, S., and Maraun, M., Regional factors rather than forest type drive the community structure of soil living orbatid mites (Acari, Oribatida), Exp. Appl. Acarol., 2012, vol. 57, pp. 157–169. https://doi.org/10.1007/s10493-012-9546-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ernst, H., Siemer, F., Bücking, J., and Witte, H., Die litorale Milbenzönose auf Uferbefeistigungen des Waserästuars in Abhändigkeit von Substrat und Salzgehaltsgradient, Intention Naturschutz Landschaftspflege, 1993, vol. 6, pp. 401–416.

    Google Scholar 

  14. Faleńczyk-Kozirog, K., Skubała, P., Habel, M., Waldom-Rudzionek, B., and Szatten, D., River islands as habitats for soil mites (Acari), River Res. Appl., 2019, vol. 35, pp. 736–748. https://doi.org/10.1002/rra.3446

    Google Scholar 

  15. Garbutt, A., de Groot, A., Smit, Ch., and Pétillon, J., European salt marshes: ecology and conservation in a changing world, J. Coast Conserv., 2017, vol. 21, pp. 405–408. https://doi.org/10.1007/s11852-017-0524-6

    Article  Google Scholar 

  16. Gerson, U., Moss-arthropod associations, Bryologist, 1969, vol. 72, no. 4, pp. 495–500.

    Article  Google Scholar 

  17. Gerson, U., Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) associated with mosses in Canada, Acarologia, 1972, vol. 13, no. 2, pp. 319–343.

    Google Scholar 

  18. Gorchakovskii, A.A., Birds of the Shokalsky Island and Yavai Peninsula (Yamalo-Nenets Autonomous District), Fauna Urala Sib., 2015, no. 2, pp. 48–60.

  19. Grishina, L.G. and Mordkovich, V.G., Fauna of oribatid mites in the Taimyr Nature Reserve, Materialy I Vserossiiskogo soveshchaniya “Problemy pochvennoi zoologii” (Proc. I All-Russ. Conf. “Soil Zoology”), Rostov-on-Don, 1996, pp. 33–34.

  20. Gurvich, G.S. and Matveeva, T.A., The study results of supralittoral of the White Sea, Tr. Gos. Gidrol. Inst., 1937, no. 8, pp. 65–74.

  21. Gwiazdowicz, D.J., Solhøy, T., Coulson, S.J., Lebedeva, N., and Melekhina, E., First record of Vulgarogamasus immanis (Acari, Mesostigmata) in Svalbard, Pol. Polar Res., 2012, vol. 33, pp. 35–39. https://doi.org/10.2478/v10183−012−0001−8

  22. Halbert, J.N., The Acarina of the seashore, Proc. R. Ir. Acad., Sect. B, 1920, vol. 35, pp. 106–152.

  23. Hammer, M., Studies on the oribatids and collemboles of Greenland, Medd. Grønl., 1944, vol. 141, no. 3, pp. 1–210.

    Google Scholar 

  24. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, pp. 1–9. http://palaeo-electronica.org/2001_1/past/ i-ssue1_01.htm.

  25. Haynert, K., Kiggen, M., Klarner, B., Maraun, M., and Scheu, S., The structure of salt marsh soil mesofauna food webs—The prevalence of disturbance, PLoS One, 2017, vol. 12, no. 12, p. e0189645. https://doi.org/10.1371/journal.pone.0189645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinton, H.E., Plastron respiration in the mite, Platyseius italicus, J. Insect Physiol., 1971, vol. 1, pp. 1185–1199. https://doi.org/10.1016/0022-1910(71)90184-3

    Article  Google Scholar 

  27. Hirschmann, W., Gangsystematik der Parasitiformes. Teil 15. Gänge von Litoralmilben und neue Litoralmilbenarten, Acarol., Schriftenr. Vgl. Milbenkd., 1966, vol. 9, pp. 25–44.

    Google Scholar 

  28. Jørgensen, M., Ein revidiertes Verzeichnis über grönländische Milben, Zool. Anz., 1934, vol. 107, nos. 1–2, pp. 40–47.

    Google Scholar 

  29. Kalyakin, V.N., Romanenko, F.N., Molochaev, A.V., Rogacheva, E.V., and Syroechkovskii, E.E., The Gyda Nature Reserve, in Zapovedniki Sibiri (Siberian Nature Reserves), Sokolov, V.E., Pavlov, D.S., and Syroechkovskii, E.E., Eds., Moscow: Logata, 2000, vol. 2, pp. 47–55.

  30. Krantz, G., Phaulodinychus mitis (Leonardi, 1899) (Acari: Uropodidae) an intertidal mite exhibiting plastron respiration, Acarologia, 1974, vol. 16, pp. 11–20.

    Google Scholar 

  31. Krivolutskii, D.A., The ways of adaptive evolution of orbatid mites in soil, in Adaptatsiya pochvennykh zhivotnykh k usloviyam sredy (Adaptation of Soil Animals to Environmental Conditions), Gilyarov, M.S., Ed., Moscow: Nauka, 1977, pp. 102–128.

  32. Krivolutskii, D.A., Role of orbatid mites in biogeocenosises, Zool. Zh., 1976, no. 2, pp. 68–78.

  33. Lambeets, K., Vandegehuchte, M. L., Maelfait, J.-P., and Bonte, D., Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks, J. Anim. Ecol., 2008, vol. 77, pp. 1162–1174. https://doi.org/10.1111/j.1365-2656.2008.01443.x

    Article  PubMed  Google Scholar 

  34. Lavrinenko, I.A., Lavrinenko, O.V., and Dobrynin, D.V., Long-term dynamics and vegetation demolishion in marches of the Kolokolkovaya Bay of the Barents Sea, Rastit. Ross., 2012, no. 21, pp. 66–77. https://doi.org/10.31111/vegrus/2012.21.66

  35. Leskov, A.I., Geobotanical description of the coastal meadows of the Malozemelskoe coast of the Barents Sea, Bot. Zh., 1936, no. 1, pp. 96–116.

  36. Lindroth, C., Andersson, H., Bodvarsson, H., and Richter, S.H., Surtsey, Iceland. The Development of a New Fauna, 1963–1970. Terrestrial Invertebrates, København: Munksgaard, 1973, suppl. 5, pp. 7–280.

  37. Luxton, M., The zonation of saltmarsh Acarina, Pedobiologia, 1967a, vol. 7, pp. 1–14.

    Google Scholar 

  38. Luxton, M., The ecology of saltmarsh Acarina, J. Anim. Ecol., 1967b, vol. 36, pp. 257–277. https://doi.org/10.2307/2911

    Article  Google Scholar 

  39. Madsen, H., Investigations on the shore fauna of East Greenland, with a survey of the shores of other arctic regions, Medd. Grønl., 1936, vol. 100, no. 8, pp. 1–79.

    Google Scholar 

  40. Makarov, K.V., Gusarov, V.I., Makarova, O.L., Bizin, M.S., and Nekhaeva, A.A., The first data on beetles (Coleoptera) of the High Arctic Shokalsky Island (Kara Sea), Russ. Entomol. J., 2018, vol. 27, no. 4, pp. 387–398. https://doi.org/10.15298/rusentj.27.4.06

    Article  Google Scholar 

  41. Makarova, O.L., Acarocenoses (Acariformes, Parasitiformes) in polar deserts: 1. Mite assemblages of the Severnaya Zemlya Archipelago: structure of fauna and abundance, Entomol. Rev., 2002, vol. 82, no. 7, pp. 839–856.

    Google Scholar 

  42. Makarova, O.L., A review of gamasid mites (Parasitiformes, Mesostigmata) dwelling in the taiga of the Pechoro-Ilychskii Nature Reserve (northern Cis-Ural Region) with analysis of their assemblages in spruce forests, Entomol. Rev., 2011, vol. 91, no. 7, pp. 915–931. https://doi.org/10.1134/S0013873811070128

    Article  Google Scholar 

  43. Makarova, O.L., The fauna of free-living mites (Acari) of Greenland, Entomol. Rev., 2015, vol. 95, no. 1, pp. 108–125. https://doi.org/10.7868/S0044513414120113

    Article  Google Scholar 

  44. Makarova, O., Free-living mites (Acari) of the Franz Josef Land Archipelago, the coldest territory in the Old World: diversity, distributions, assemblages, Proc. IX International Congress of Acarology, Abstracts of Papers, Sullivan G.T. and Ozman-Sullivan S.K., Eds., Ankara: Bilkon Turizm Organizasyon Yayıncılık, 2018, p. 127.

  45. Makarova, O.L. and Bizin, M.S., Littoral mesostigmatic mites (Acari, Parasitiformes) from the Kola Peninsula, Polar Biol., 2020, vol. 43, pp. 1503–1518.

    Article  Google Scholar 

  46. Makarova, O.L. and Böcher, J., Diversity and geographical range of Greenland mites (Acari: Oribatida and Mesostigmata), in Species and Communities in Extreme Environments, Golovatch, S.I., Makarova, O.I., Babenko, A.B., and Penev, L.D., Eds., Sofia: Pensoft, 2009, pp. 165–186.

    Google Scholar 

  47. Makarova, O.L. and Petrova-Nikitina, A.D., Successions of gamasid mites (Parasiriformes, Mesostigmata) in storm deposits on the littoral of the White Sea (Velikaya Salma Strait), Materialy nauchnoi konferentsii, posvyashchennoi 70-letiyu Belomoskoi biologicheskoi stantsii im. N.A. Pertsova, 9–10 avgusta 2008 goda (Proc. Sci. Conf. Dedicated to the 70th Anniversary of the Pertsov White Sea Biological Station, August 9–10, 2008), Moscow: Grif i K, 2008, pp. 75–79.

  48. Makarova, O.L., Ermilov, S.G., Yurtaev, A.A., and Mansurov, R.I., The first data on the soil mites (Acari) of the Arctic Belyi Island (Northern Yamal, the Kara Sea), Entomol. Rev., 2015, vol. 95, no. 6, pp. 805–810. https://doi.org/10.7868/S0044513415080127

    Article  Google Scholar 

  49. Marine Community Ecology, Bertness, M.D., Gaines, S.D., and Hay, M.E., Eds., Sunderland: Sinauer, 2001.

    Google Scholar 

  50. Matveeva, N.V. and Lavrinenko, O.V., Vegetation of marshes in the northeast of Malozemelskaya tundra, Rastit. Ross., 2011, nos. 17–18, pp. 45–69. https://doi.org/10.31111/vegrus/2011.17-18.45

  51. Meehan, M.L., Song, Zh., and Proctor, H., Roles of environmental and spatial factors in structuring assemblages of forest-floor Mesostigmata in the boreal region of Northern Alberta, Canada, Int. J. Acarol., 2018, vol. 44, pp. 300–309. https://doi.org/10.1080/01647954.2018.1520297

    Article  Google Scholar 

  52. Mitchell, R.J., Urpeth, H.M., Britton, A.J., and Taylor, A.R., Soil microarthropod-plant community relationships in alpine moss-sedge heath, Appl. Soil. Ecol., 2017, vol. 111, pp. 1–8. https://doi.org/10.1016/j.apsoil.2016.10.010

    Article  Google Scholar 

  53. Moeller, J., Ökologische Untersuchungen über die terrestrische Arthropodenfauna im Anwurf mariner Algen, Z. Morphol. Ökol. Tiere, 1965, vol. 55, pp. 530–586.

    Article  Google Scholar 

  54. Nekhaeva, A.A., Spiders (Arachnida, Aranei) of the High Arctic Shokalsky Island (73° N), the Kara Sea, Russia, Arthropoda Sel., 2018, vol. 27, no. 4, pp. 367–372.

    Google Scholar 

  55. Neumann, D., Tidal and lunar rhythms, in Biological Rhythms, Boston, MA: Springer-Verlag, 1981, pp. 351–380.

    Google Scholar 

  56. Nielsen, U.N., Osler, G.H.R., van der Wal, R., Campbel C.D., and Burslem, D.F.R.P., Soil pore volume and the abundance of soil mites in two contrasting habitats, Soil Biol. Biochem., 2008, vol. 40, pp. 1538–1541.

    Article  CAS  Google Scholar 

  57. Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Burslem, D.F.R.P., and van der Wal, R., The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale, J. Biogeogr., 2010, vol. 37, pp. 1317–1328. https://doi.org/10.1111/j.1365-2699.2010.02281.x

    Article  Google Scholar 

  58. Nielsen, U.N., Osler, G.H.R., Campbell, C.D., Burslem, D.F.R.P., and van der Wal, R., Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats, Pedobiologia, 2012, vol. 55, pp. 83–91. https://doi.org/10.1016/j.pedobi.2011.11.002

    Article  Google Scholar 

  59. Osler, G.H.R., Cole, L., and Keith, A.M., Changes in oribatid mite community structure associated with the succession from heather (Calluna vulgaris) moorland to birch (Betula pubescens) woodland, Pedobiologia, 2006, vol. 50, pp. 323–330. https://doi.org/10.1016/j.pedobi.2006.05.001

    Article  Google Scholar 

  60. Pan’kov, A.N., New species of orbatid mites (Oribatei) from Far East, Zool. Zh., 2002, vol. 81, no. 2, pp. 242–245.

    Google Scholar 

  61. Petrova-Nikitina, A.D. and Makarova, O.L., Order Parasitiformes Zachvatkin, 1952, in Katalog bioty Belomorskoi stantsii MGU (Catalogue of Biota of the White Sea Biological Station of the Moscow State University), Chesunov, A.V., Kalyakina, N.M., and Bubnova, E.N., Eds., Moscow: KMK, 2008, pp. 324–327.

  62. Pfingstl, T., Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): implications for ecology and hydrochorous dispersal, Exp. Appl. Acarol., 2013, vol. 61, no. 1, pp. 87–96. https://doi.org/10.1007/s10493-013-9681-y

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pfingstl, T., The marine-associated lifestyle of ameronothroid mites (Acari, Oribatida) and its evolutionary origin: a review, Acarologia, 2017, vol. 57, no. 3, pp. 693–721. https://doi.org/10.24349/acarologia/20174197

    Article  Google Scholar 

  64. Polderman, P.J.G., The oribatida (Acari) of saline areas in the western part of the Dutch Wadden Sea, Neth. J. Sea Res., 1974, vol. 8, no. 1, pp. 49–72.

    Article  Google Scholar 

  65. Ponge, J.-F., Biocenoses of Collembola in atlantic temperate grass-woodland ecosystems, Pedobioligia, 1993, vol. 37, no. 4, pp. 223–244.

    Google Scholar 

  66. Procheş, Ş. and Marshall, D.J., Global distribution patterns of non-halacarid marine intertidal mites: Implications for their origins in marine habitats, J. Biogeogr., 2001, vol. 28, no. 1, pp. 47–58. https://doi.org/10.1046/j.1365-2699.2001.00513.x

    Article  Google Scholar 

  67. Pugh, P.J.A. and King, P.E., The vertical distribution of British Intertidal Acari: the Nonhalacarid fauna (Arachnida: Acari), J. Zool. A, 1985, vol. 207, pp. 21–37.

    Article  Google Scholar 

  68. Pugh, P.J.A. and King, P.E., Seasonality in British intertidal Acari, J. Nat. Hist., 1986, vol. 20, pp. 653–666. https://doi.org/10.1080/00222938600770451

    Article  Google Scholar 

  69. Pugh, P.J.A. and King, P.E., Acari of the British supralittoral, J. Nat. Hist., 1988, vol. 22, pp. 107–122. https://doi.org/10.1080/00222938800770081

    Article  Google Scholar 

  70. Pugh, P.J.A., King, P.E., and Fordy, M.R., Structural features associated with respiration in some intertidal Uropodina (Acarina: Mesostigmata), J. Zool., Lond., 1987a, vol. 211, pp. 107–120. https://doi.org/10.1111/j.1469-7998.1987.tb07456.x

    Article  Google Scholar 

  71. Pugh, P.J.A., King, P.E., and Fordy, M.R., The structure and probable function of the peritreme in intertidal Gamasina (Acari: Mesostigmata), Zool. J. Linn. Soc., 1987b, vol. 89, pp. 393–407.

    Article  Google Scholar 

  72. Rebristaya, O.V., Vascular plants of Shokalsky Island (Kara Sea), Bot. Zh., 2002, no. 6, pp. 29–40.

  73. Remmert, H., Der Tagesgang im Strandanwurf und seine ökologische Bedeutung, Verh. Dtsch. Zool. Ges., 1961, vol. 25, pp. 438–445.

    Google Scholar 

  74. Rigby, M.C., Association of a juvenile phoretic uropodid mite with the beach hopper Traskorchestia traskiana (Stimpson, 1857) (Crustacea: Talitridae), J. Nat. Hist., 1995, vol. 30, pp. 1617–1624. https://doi.org/10.1080/00222939600770941

    Article  Google Scholar 

  75. Rozhnov, V.V., Lavrinenko, I.A., Razzhivin, V.Yu., Makarova, O.L., Lavrinenko, O.V., Anufriev, V.V., Babenko, A.B., Bizin, M.S., Glazov, P.M., Goryachkin, S.V., Kolesnikova, A.A., Matveeva, N.V., Pestov, S.V., Petrovskii, V.V., Pokrovskaya, O.B., et al., Revision of the biodiversity of a large Arctic region as the basis for monitoring and protection in conditions of active economic development (Nenets Autonomous Okrug, Russia), Nat. Conserv. Res., 2019, no. 4 (2), pp. 1–28. https://doi.org/10.24189/ncr.2019.015

  76. Salmane, I., Fauna of soil-dwelling predatory Gamasina mites (Acari: Mesostigmata) in seashore habitats of the Kurzeme coast, Latvia, Ecologia (Bratislava), 2000, vol. 19, suppl. 4, pp. 87–96.

    Google Scholar 

  77. Salmane, I., Fauna of soil Gamasina mites (Acari, Mesostigmata) along the Latvian seacoast and the relation to respective habitats, Norw. J. Entomol., 2001, vol. 48, pp. 223–230.

    Google Scholar 

  78. Salmane, I. and Brumelis, G., The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil, Pedobiologia, 2008, vol. 52, pp. 69–76. https://doi.org/10.1016/j.pedobi.2008.03.002

    Article  Google Scholar 

  79. Schulte, G., Vertikalwanderungen küstenbewohnender Milben (Acari, Oribatei), Neth. J. Sea Res., 1973, vol. 7, pp. 68–80.

    Article  Google Scholar 

  80. Schulte, G., Schuster, R., and Schubart, H., Zur Verbreitung und Ökologie der Ameronothriden (Acari, Oribatei) in terrestrischen, limnischen und marinen Lebensräumen, Veroeff. Inst. Meeresforsch. Bremerhaven, 1975, vol. 15, pp. 359–385.

    Google Scholar 

  81. Schuster, R., Hornmilben (Oribatei) als Bewohner des marinen Litorals, in Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven. Sonderband, Bremen: Kommissionsverlag F. Leuwer, 1963, pp. 319–327.

    Google Scholar 

  82. Schuster, R., Die Ökologie der terrestrischen Kleinfauna des Meerestrandes, Zool. Anz., 1965, suppl. 28, pp. 492–521.

  83. Schuster, R., Soil mites in the marine environment, Recent Adv. Acarol., 1979, vol. 1, pp. 593–602.

    Article  Google Scholar 

  84. Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences, Martini, I.O. and Wanless, H.R., Eds., London: Geol. Soc. Lond., 2014.

    Google Scholar 

  85. Sergienko, L.A., Flora i rastitel’nost’ poberezhii Rossiiskoi Arktiki i sopredel’nykh territorii (Coastal Flora and Vegetation of Russian Arctic and Adjacent Territories), Petrozavodsk: Petrozavodsk. Gos. Univ., 2008.

  86. Sergienko, L.A., Sostav i dinamika rastitel’nosti poberezhii Rossiiskoi Arktiki (Composition and Dynamics of Coastal Vegetation of Russian Arctic), Petrozavodsk: Petrozavodsk. Gos. Univ., 2013.

  87. Silvestri, S., Defina, A., and Marani, M., Tidal regime, salinity and salt marsh plant zonation, Estuarine, Coastal Shelf Sci., 2005, vol. 62, pp. 119–130. https://doi.org/10.1016/j.ecss.2004.08.010

    Article  CAS  Google Scholar 

  88. StatSoft, STATISTICA (data analysis software system), version 8.0, 2007. http://www.statsoft.com.

  89. Strenzke, K., Die Arthropodensukzession im Strandanwurf mariner Algen unter experimentell kontrollierten Bedingungen, Pedobiologia, 1963, vol. 3, pp. 95–141.

    Article  Google Scholar 

  90. Trofimov, V.T. and Korolev, V.A., Praktikum po gruntovedeniyu (Practical Manual on Soil Science), Moscow: Mosk. Gos. Univ., 1993.

  91. Vorob’eva, L.A., Khimicheskii analiz pochv (Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1998.

  92. Vreeken-Bruijs, M.J., Hassink, J., and Brussaard, L., Relations of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use, Soil Biol. Biochem., 1998, vol. 30, pp. 97–106. https://doi.org/10.1016/S0038-0717(97)00064-3

    Article  Google Scholar 

  93. Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., and van der Putten, W.H., Soil Ecology and Ecosystem Services, Oxford: Oxford Univ. Press, 2013.

    Google Scholar 

  94. Walter, H., Die Vegetation der Erde in Öko-Physiologischer Betrachtung, vol. 2: Die Gemäßigten und Arktischen Zonen, Jena: Gustav Fischer Verlag, 1968.

    Google Scholar 

  95. Weigmann, G., Zur Ökologie der Collembolen und Oribatiden im Grenzbereich Land—Meer (Collembola, Insecta–Oribatei, Acari), Z. Wiss. Zool., 1973, vol. 186, pp. 295–391.

    Google Scholar 

  96. Weigmann, G., Oribatid mites communities in Atlantic salt marshes: an ecological and biogeographical comparison between German and Portuguese seashores, Proc. 6th European Congr. “Integrative Acarology,” Montpellier: Eur. Assoc. Acarol., 2008, pp. 275–283.

  97. Yurtaev, A.A., Comprehensive studies of the soil cover of Belyi Island: first results, Nauchn. Vestn. Yamalo-Nenets. Avton. Okr., 2016, no. 4, pp. 8–11.

  98. Zacharda, M., Soil mites of the family Rhagidiidae (Actinedidae: Eupodidae). Morphology, systematics, ecology, Acta Univ. Carol., Biol., 1980, vols. 5–6, pp. 489–785.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The materials used in this study have been collected in the framework of the complex expedition of Gyda Nature Reserve. We are thankful to its officers—V.V. Berlinskii, A.A. Gorchakovskii, and V.L. Lapsui—and participants of the expedition—N.B. Korostelev, A.D. Nikitina, M.A. Sukhova, and D.M. Shiryaev—for assistance in the field works. We are grateful to M.S. Rozanova (Moscow State University) for valuable recommendations on the chemical analysis of the soil samples and to A.A. Khaustov (University of Tyumen) and F.E. Chetverikov (St. Petersburg University) for consultations on identifying mite species. We thank our colleagues A.B. Babenko, S.I. Golovatch, and A.A. Nekhaeva for carefully reading our manuscript and for their helpful remarks and D.I. Korobushkin, O.L. Rozanova, and S.M. Tsurikov for assistance in measurements involving the elemental analyzer.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 17-04-01603, and performed as part of the State Task of the Shirshov Institute of Oceanology, Russian Academy of Sciences, project no. 0149-2019-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Bizin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizin, M.S., Borisenko, G.V. & Makarova, O.L. Impact of Environmental Factors on the Formation of Soil-Mite (Acari) Assemblages on Coastal Marshes of Shokalsky Island, Kara Sea. Contemp. Probl. Ecol. 14, 112–127 (2021). https://doi.org/10.1134/S1995425521020037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521020037

Keywords:

Navigation