Skip to main content
Log in

Climatic Response of Conifer Radial Growth in Forest-Steppes of South Siberia: Comparison of Three Approaches

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

We compared three approaches to study climatic signals of Pinus sylvestris and Larix sibirica treering width chronologies from the forest-steppe zone of South Siberia, where both temperature and precipitation limit the conifer tree growth: 1—paired correlation of chronologies with monthly climatic variables; 2— paired and partial correlations with monthly and seasonal series of primary and secondary climatic factors, calculated in the Seascorr program; 3—paired correlation with a 15-day moving average series of climatic variables. The comparison showed that simple paired correlation with monthly series as the simplest approach could be used for a wide range of dendroclimatic studies, both as a main procedure and for preliminary analysis. The Seascorr analysis is the most suitable for assessing climate-growth relationship in extreme growth conditions and for reconstructions of extremes, e.g. droughts, and of their impact periods. The application of the 15-day moving average series is limited by availability of daily climatic data, but it describes the seasonal window of climatic response with high precision. Altogether, the combination of three approaches allowed to explore the spatial-temporal pattern of the conifers radial growth climatic response in South Siberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agafonov, L.I., and Kukarskikh, V.V., Climate changes in the past century and radial increment of pine in the Southern Ural steppe, Russ. J. Ecol., 2008, vol. 39, no. 3, pp. 160–167.

    Article  Google Scholar 

  • Andreev, S.G., Vaganov, E.A., Naurzbaev, M.M., and Tulukhonov, A.K., Radial growth of trees as an indicator of long-term changes in the hydrological regime of the Baikal Lake basin), Geogr. Prirod. Res., 2001, no. 4, pp. 43–49.

    Google Scholar 

  • Babushkina, E.A., Vaganov, E.A., and Silkin, P.P., Influence of climatic factors on tree-ring cell structure of conifers growing in different topoecological conditions in forest-steppe zone of Khakassia, J. Sib. Fed. Univ., Biol., 2010, vol. 3, no. 2, pp. 159–176.

    Google Scholar 

  • Bazhenova, O.I., and Tyumentseva, E.M., The structure of contemporary denudation in the steppes of the Minusinskaya depression, Geogr. Nat. Resour., 2010, vol. 31, no. 4, pp. 362–369.

    Article  Google Scholar 

  • Belmecheri, S., Babst, F., Wahl, E.R., Stahle, D.W., and Trouet, V., Multi-century evaluation of Sierra Nevada snowpack, Nat. Clim. Change, 2016, vol. 6, pp. 2–3.

    Article  Google Scholar 

  • Bjorklund, J., Seftigen, K., Schweingruber, F., et al., Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers, New Phytol., 2017, vol. 216, no. 3, pp. 728–740.

    Article  PubMed  CAS  Google Scholar 

  • Bunn, A.G., Hughes, M.K., Kirdyanov, A.V., et al., Comparing forest measurements from tree rings and a spacebased index of vegetation activity in Siberia, Environ. Res. Lett., 2013, vol. 8, no. 3, p. 035034.

    Article  Google Scholar 

  • Cai, Q., and Liu, Y., Two centuries temperature variations over subtropical southeast China inferred from Pinus taiwanensis Hayata tree-ring width, Clim. Dyn., 2017, vol. 48, nos. 5–6, pp. 1813–1825.

    Article  Google Scholar 

  • Carrer, M., Castagneri, D., Prendin, A.L., Petit, G., and von Arx, G., Retrospective analysis of wood anatomical traits reveals a recent extension in tree cambial activity in two high-elevation conifers, Front. Plant Sci., 2017, vol. 8, p. 737.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavin, L., and Jump, A.S., Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge, Global Change Biol., 2017, vol. 23, no. 1, pp. 362–379.

    Article  Google Scholar 

  • Chytrý, M., Danihelka, J., Kubešová, S., et al., Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia, Plant Ecol., 2008, vol. 196, no. 1, pp. 61–83.

    Google Scholar 

  • Cook, E.R., and Krusic, P.J., Program ARSTAN (Version 41d), Palisades: Lamont-Doherty Earth Observ., Columbia Univ., 2005. https://doi.org/ldeo.columbia.edu/tree-ring-laboratory/resources/software.

    Google Scholar 

  • Cook, E.R., Seager, R., Cane, M.A., and Stahle, D.W., North American drought: reconstructions causes and consequences, Earth Sci. Rev., 2007, no. 81, pp. 93–134.

    Article  Google Scholar 

  • Cortina, J., Maestre, F.T, Vallejo, R., et al., Ecosystem structure, function, and restoration success: Are they related? J. Nat. Conserv., 2006, no. 14, pp. 152–160.

    Google Scholar 

  • Coulthard, B., and Smith, D.J., A 477-year dendrohydrological assessment of drought severity for Tsable River, Vancouver Island, British Columbia, Canada, Hydrol. Process., 2016, vol. 30, no. 11, pp. 1676–1690.

    Article  Google Scholar 

  • DeRose, R.J., Bekker, M.F., Wang, S.-Y., et al., A millennium-length reconstruction of Bear River stream flow, Utah, J. Hydrol., 2015, vol. 529, no. 2, pp. 524–534.

    Article  Google Scholar 

  • Friedrichs, D.A., Trouet, V., Buntgen, U., et al., Speciesspecific climate sensitivity of tree growth in Central- West Germany, Trees, 2009, vol. 23, pp. 729–739.

    Article  Google Scholar 

  • Fritts, H.C., Tree Rings and Climate, London: Academic, 1976.

    Google Scholar 

  • Fulé, P.Z. Wildfire ecology and management at Grand Canyon, USA: tree-ring applications in forest fire history and modeling, in Tree Rings and Natural Hazards: A State-of-the-Art, Stoffel, M., Bollschweiler, M., Butler, D.R., and Luckman, B.H., Eds., Dordrecht: Springer-Verlag, 2010, pp. 365–381.

    Chapter  Google Scholar 

  • Goldblum, D., and Rigg, L.S., Tree growth response to climate change at the deciduous–boreal forest ecotone, Ontario, Canada, Can. J. For. Res., 2005, no. 35, pp. 2709–2718.

    Google Scholar 

  • Holmes, R.L., Dendrochronology Program Library: User’s Manual, Tucson: Univ. of Arizona, 1998.

    Google Scholar 

  • Hou, Y., Niu, Z., Zheng, F., et al., Drought fluctuations based on dendrochronology since 1786 for the Lenglongling Mountains at the northwestern fringe of the East Asian summer monsoon region, J. Arid Land, 2016, vol. 8, no. 4, pp. 492–505.

    Article  Google Scholar 

  • Kurz-Besson, C.B., Lousada, J.L., Gaspar, M.J., et al., Effects of recent minimum temperature and water deficit increases on Pinus pinaster radial growth and wood density in Southern Portugal, Front. Plant Sci., 2016, no. 7, p. 1170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova, E.P., and Kozlov, D.N., Tree-ring variability of larch (Larix sibirica Ledeb.) in different landscape positions of the Terekhol Depression, Tuva, Russia in the 20th century, J. Sib. Fed. Univ., Biol., 2011, vol. 4, no. 4, pp. 325–337.

    Google Scholar 

  • Laughlin, D.C., and Grace, J.B., A multivariate model of plant species richness in forested systems: old-growth montane forests with a long history of fire, Oikos, 2006, vol. 114, no. 1, pp. 60–70.

    Article  Google Scholar 

  • Lavergne, A., Daux, V., Villalba, R., and Barichivich, J., Temporal changes in climatic limitation of tree-growth at upper treeline forests: contrasted responses along the west-to-east humidity gradient in Northern Patagonia, Dendrochronology, 2015, vol. 36, pp. 49–59.

    Article  Google Scholar 

  • Liang, W., Heinrich, I., Simard, S., et al., Climate signals derived from cell anatomy of Scots pine in NE Germany, Tree Physiol., 2013, vol. 33, pp. 833–844.

    Article  PubMed  Google Scholar 

  • Magda, V.N., Block, J., Oidupaa, O.C., and Vaganov, E.A., Extraction of the climatic signal for moisture from treering chronologies of Altai–Sayan mountain foreststeppes, Contemp. Probl. Ecol., 2011, vol. 4, no. 7, pp. 716–724.

    Article  Google Scholar 

  • Makunina, N.I., Botanical and geographical characteristics of forest steppe of the Altai-Sayan mountain region, Contemp. Probl. Ecol., 2016, vol. 9, no. 3, pp. 342–348.

    Article  Google Scholar 

  • Maxwell, J.T., The benefit of including rarely-used species in dendroclimatic reconstructions: a case study using Juglans nigra in South-Central Indiana, USA, Tree- Ring Res., 2016, vol. 72, no. 1, pp. 44–52.

    Article  Google Scholar 

  • Meko, D.M., Touchan, R., and Anchukaitis, K.J., Seascorr: a MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series, Comput. Geosci., 2011, vol. 37, no. 9, pp. 1234–1241.

    Article  Google Scholar 

  • Meko, D.M., Touchan, R., Díaz, J.V., et al., Sierra San Pedro Mártir, Baja California, cool season precipitation reconstructed from earlywood width of Abies concolor tree rings, J. Geophys. Res.: Biogeosci., 2013, vol. 118, no. 4, pp. 1660–1673.

    Article  Google Scholar 

  • Methods of Dendrochronology. Application in Environmental Sciences, Cook, E.R., and Kairiukstis, L.A., Eds., Dordrecht: Kluwer, 1990.

    Google Scholar 

  • Moser, L.A., Fonti, P., Buntgen, U., et al., Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps, Tree Physiol., 2010, vol. 30, no. 2, pp. 225–233.

    Article  PubMed  Google Scholar 

  • Opala, M., Migala, K., and Owczarek, P., Two centurieslong dendroclimatic reconstruction based on Low Arctic Betula pubescens from Tromsø Region, Northern Norway, Pol. Polar Res., 2016, vol. 37, no. 4, pp. 457–476.

    Article  Google Scholar 

  • Opala, M., Niedzwiedz, T., Rahmonov, O., Owczarek, P., and Malarzewski, L., Towards improving the Central Asian dendrochronological network-new data from Tajikistan, Pamir-Alay, Dendrochronology, 2017, no. 41, pp. 10–23.

    Article  Google Scholar 

  • Pan, Y., and Raynal, D.J., Predicting growth of plantation conifers in the Adirondack Mountains in response to climate change, Can. J. For. Res., 1995, vol. 25, no. 1, pp. 48–56.

    Article  Google Scholar 

  • Panyushkina, I.P., Hughes, M.K., Vaganov, E.A., and Munro, M.A.R., Summer temperature in northeastern Siberia since 1642 reconstructed from tracheids dimensions and cell numbers of Larix cajanderi, Can. J. For. Res., 2003, vol. 33, no. 10, pp. 1905–1914.

    Article  Google Scholar 

  • Panyushkina, I.P., Ovtchinnikov, D.V., and Adamenko, M.F., Mixed response of decadal variability in larch tree-ring chronologies from upper tree-lines of Russian Altai, Tree- Ring Res., 2005, vol. 61, no. 1, pp. 33–42.

    Article  Google Scholar 

  • Pearson, K., Note on regression and inheritance in the case of two parents, Proc. R. Soc. London, 1895, vol. 58, pp. 240–242.

    Article  Google Scholar 

  • Pederson, N., Jacoby, G.C., D’ Arrigo, R.D., et al., Hydrometeorological reconstructions for northeastern Mongolia derived from tree rings: 1651–1995, J. Clim., 2001, vol. 14, no 5, pp. 872–881.

    Article  Google Scholar 

  • Polyakova, M.A., Dembicz, I., Becker, T., et al., Scale-and taxon-dependent patterns of plant diversity in steppes of Khakassia, South Siberia (Russia), Biodiversity Conserv., 2016, vol. 25, no. 12, pp. 2251–2273.

    Article  Google Scholar 

  • Restaino, C.M., Peterson, D.L., and Littell, J., Increased water deficit decreases Douglas fir growth throughout western US forests, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 34, pp. 9557–9562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rinn, F. TSAP Win. Time Series Analysis and Presentation for Dendrochronology and Related Application, Version 4/64 for Microsoft Windows: User Reference, Heidelberg, 2011.

    Google Scholar 

  • Rossi, S., Deslauriers, A., Griçar, J., et al., Critical temperatures for xylogenesis in conifers of cold climates, Global Ecol. Biogeogr., 2008, no. 17, pp. 696–707.

    Article  Google Scholar 

  • Rozas, V., and Olano, J.M., Dendroclimatic responses of four European broadleaved tree species near their southwestern range edges, Dendrobiology, 2017, no. 77, pp. 65–75.

    Article  Google Scholar 

  • Schulze, E.D., Beck, E., and Müller-Hohenstein, K., Plant Ecology, Berlin: Springer-Verlag, 2005.

    Google Scholar 

  • Schweingruber, F.H., Tree Rings and Environment: Dendroecology, Bern: Paul Haupt, 1996.

    Google Scholar 

  • Seim, A., Omurova, G., Azisov, E., et al., Climate change increases drought stress of juniper trees in the mountains of central Asia, PLoS One, 2016, vol. 11, no. 4, p. e0153888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah, S.K., Touchan, R., Babushkina, E.A., et al., August- July precipitation from tree rings in forest-steppe zone of Central Siberia (Russia), Tree-Ring Res., 2015, vol. 71, no. 1, pp. 37–44.

    Article  Google Scholar 

  • Shishov, V.V., Naurzbaev, M.M., Vaganov, E.A., Ivanovskii, A.B., and Korets, M.A., The analysis of the radial growth variability of woody plants on Eurasian North at the last decades, Izv. Ross. Akad. Nauk, Ser. Geogr., 2007, no. 3, pp. 49–58.

    Google Scholar 

  • Shiyatov, S.G. Dendrokhronologiya verkhnei granitsy lesa na Urale (Dendrochronology of the Higher Timberline on the Urals), Moscow: Nauka, 1986.

    Google Scholar 

  • Slimani, S., Derridj, A., and Gutierrez, E., Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria), For. Syst., 2014, vol. 23, no. 3, pp. 448–460.

    Google Scholar 

  • Tejedor, E., Saz, M.Á., Cuadrat, J.M., Esper, J., and de Luis, M., Temperature variability in the Iberian Range since 1602 inferred from tree-ring records, Clim. Past, 2017, vol. 13, no 2, pp. 93–105.

    Article  Google Scholar 

  • Tessier, L., Keller, T., Guiot, J., Edouard, J., and Guibal, F., Predictive models of tree-growth: Preliminary results in the French Alps., Impact Clim. Var. For., 1998, no. 74, pp. 109–120.

    Article  Google Scholar 

  • Touchan, R., Akkemik, Ü., Hughes, M.K., and Erkan, N., May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings, Quat. Res., 2007, no. 68, pp. 196–202.

    Article  Google Scholar 

  • Touchan, R., Christou, A.K., Meko, D.M., Six centuries of May–July precipitation in Cyprus from tree rings, Clim. Dyn., 2014, vol. 43, no. 12, pp. 3281–3292.

    Article  Google Scholar 

  • Touchan, R., Kherchouche, D., Oudjehih, B., et al., Dendroclimatology and wheat production in Algeria, J. Arid Environ., 2016, no. 124, pp. 102–110.

    Article  Google Scholar 

  • Vaganov, E.A., and Shashkin, A.V., Rost i struktura godichnykh kolets khvoinykh (Growth and Structure of Tree Rings of Conifers), Novosibirsk: Nauka, 2000.

    Google Scholar 

  • Vaganov, E.A., Hughes, M.K., Kirdyanov, A.V., Schweingruber, F.H., and Silkin, P.P., Influence of snowfall and melt timing on tree growth in subarctic Eurasia, Nature, 1999, no. 400, pp. 149–151.

    Article  CAS  Google Scholar 

  • Vaganov, E.A., Naurzbaev, M.M., Shishov, V.V., et al., Long-term climatic changes in the arctic region of the northern hemisphere, Dokl. Earth Sci., 2000, vol. 375, no. 8, pp. 1314–1317.

    Google Scholar 

  • Vaganov, E.A., Hughes, M.K., and Shashkin, A.V., Growth Dynamics of Conifer Tree Rings. Images of Past and Future Environments, Berlin: Springer-Verlag, 2006.

    Google Scholar 

  • Vaganov, E.A., Anchukaitis, K.J., and Evans, M.N., How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics, in Dendroclimatology: Progress and Prospects, Hughes, M.K., Swetnam, T.W., and Diaz, H.F., Eds., Dordrecht: Springer-Verlag, 2011, pp. 37–75.

    Chapter  Google Scholar 

  • Velisevich, S.N., and Khutornoy, O.V., Effect of climatic factors on radial growth of Siberian pine and Siberian larch at sites with different soil humidity in the South of Western Siberia, J. Sib. Fed. Univ., Biol., 2009, vol. 2, no. 1, pp. 117–132.

    Google Scholar 

  • Wang, W., Liu, X., Xu, G., et al., Temperature signal instability of tree-ring d13C chronology in the northeastern Qinghai–Tibetan Plateau, Global Planet. Change, 2016, no. 139, pp. 165–172.

    Article  Google Scholar 

  • Wilson, R., and Elling, W., Temporal instabilities of treegrowth/ climate response in the Lower Bavarian Forest Region: implications for dendroclimatic reconstruction, Trees, 2003, vol. 18, no. 1, p. 19–28.

    Article  Google Scholar 

  • Yang, B.C., Qin, J., Wang, M., et al., A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 8, pp. 2903–2908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, B., He, M., Shishov, V., et al., New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 27, pp. 6966–6971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Belokopytova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belokopytova, L.V., Babushkina, E.A., Zhirnova, D.F. et al. Climatic Response of Conifer Radial Growth in Forest-Steppes of South Siberia: Comparison of Three Approaches. Contemp. Probl. Ecol. 11, 366–376 (2018). https://doi.org/10.1134/S1995425518040030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425518040030

Keywords

Navigation