Skip to main content
Log in

Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This article deals with the issues of studying low-molecular-weight volatile organic compounds (VOCs) of aquatic macrophytes growing in Russia under different environmental conditions and geographic regions. It is shown that the composition of VOCs and their content depend on the abiotic (geographical location of habitats, hydrological regime, and light conditions) and biotic factors (season and vegetation phase, distribution in different vegetative organs). Special attention has been paid to the functions performed by VOCs in aquatic ecosystems and their possible use for controlling phytoplankton development and algal “blooms” in inland water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allelopathy. A Physiological Process with Ecological Implications, Reigosa, M.J., Pedrol, N., and Gonzalez, L., Eds., Dordrecht, The Netherlands: Springer, 2006.

    Google Scholar 

  • Arimura, G., Matsui, K., and Takabayashi, J., Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions, Plant Cell Physiol., 2009, vol. 50, no. 5, pp. 911–923.

    CAS  PubMed  Google Scholar 

  • Ashton, F.M., Ditomasco, J.M., and Anderson, L.W.J., Spike-rush (Eleocharis spp.): a source of allelopathic for the control of undesirable aquatic weeds, J. Aquat. Plant Manage., 1984, vol. 22, pp. 52–56.

    Google Scholar 

  • Bajpai, V.K., Rahman, A., and Kang, S.C., Chemical composition and inhibitory parameters of essential oil and extracts of Nandina domestica Thunb. to control foodborne pathogenic and spoilage bacteria, Int. J. Food. Microbiol., 2008, vol. 125, pp. 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Balderrama, N., Nunez, J., Guerrieri, F., and Giurfa, M., Different functions of two alarm substances in the honeybee, J. Comp. Physiol., A, 2002, vol. 188, pp. 485–491.

    Article  CAS  Google Scholar 

  • Batish, D.R., Singh, H.P., Kaur, M., Kohli, R.K., and Singh, S., Chemical characterization and phytotoxicity of volatile essential oil from leaves of Anisomeles indica (Lamiaceae), Biochem. Syst. Ecol., 2012, vol. 41, pp. 104–109.

    Article  CAS  Google Scholar 

  • Bi, H.H., Zeng, R.S., Su, L.M., An, M., and Luo, S.M., Rice allelopathy induced by methyl jasmonate and methyl salicylate, J. Chem. Ecol., 2007, vol. 33, pp. 1089–1103.

    Article  CAS  PubMed  Google Scholar 

  • Birkett, M.A., Campbell, C.A.M., Chamberlain, K., Guerrieri, E., Hick, A.J., Martin, J.L., Matthes, M., Napier, J.A., Pettersson, J., Pickett, J.A., Poppy, G.M., Pow, E.M., Pye, B.J., Smart, L.E., Wadhams, G.H., Wadhams, L.J., and Woodcock, C.M., New roles for cis-jasmone as an insect semiochemical and in plant defense, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 16, pp. 9329–9334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blindow, I., Hargeby, A., and Andersson, G., Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation, Aquat. Bot., 2002, vol. 72, pp. 315–334.

    Article  Google Scholar 

  • Braginskii, L.P., Practical obstacles for implementation of chemical preventions of water “blooming” in reservoirs, Vodn. Resur., 1977, no. 2, pp. 5–16.

    Google Scholar 

  • Cangiano, T., Della Greca, M., Fiorentino, A., Isidori, M., Monaco, P., and Zarrelli, A., Effect of entlabdane diterpenes from Potamogetonaceae on Selenastrum. capricornutum and other aquatic organisms, J. Chem. Ecol., 2002, vol. 28, pp. 1091–1102.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, W.W., Azevedo, S.M., An, J.S., Molica, R.J., Jochimsen, E.M., Lau, S., Rinehart, K.L., Shaw, G.R., and Eaglesham, G.K., Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins, Environ. Health Perspect., 2001, vol. 10, pp. 663–668.

    Article  Google Scholar 

  • Chadin, I., Volodin, V., Whiting, P., Shirshova, T., Kolegova, N., and Dinan, L., Ecdysteroid content and distribution in plants of genus Potamogeton, Biochem. Syst. Ecol., 2003, vol. 31, pp. 407–415.

    Article  CAS  Google Scholar 

  • Chavarria-Carvajal, J.A., Rodriguez-Kabana, R., Kloepper, J.W., and Morgan-Jones, G., Changes in populations of microorganisms associated with organic amendments and benzaldehyde to control plant parasitic nematodes, Nematropica, 2001, no. 31, pp. 165–180.

    Google Scholar 

  • Christov, C., Pouneva, I., Bozhkova, M., Toncheva, T., Fournadzieva, S., and Zafirova, T., Influence of temperature and methyl jasmonate on Scenedesmus incrassulatus, Biol. Plant, 2001, vol. 44, pp. 367–371.

    Article  CAS  Google Scholar 

  • Cyanobacteria: Ecology, Toxicology and Management, Aloysio da Silva Ferrao Filho, Ed., New York: Nova Sci. Publ., 2013.

  • Czerpak, R., Piotrowska, A., and Szulecka, K., Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris, Acta Physiol. Plant., 2006, vol. 28, no. 3, pp. 195–203.

    CAS  Google Scholar 

  • Della Greca, M., Di Marino, C., Zarrelli, A., and D’Abrosca, B., Isolation and phytotoxicity of apocarotenoids from Chenopodium album, J. Nat. Prod., 2004, vol. 67, pp. 1492–1495.

    Article  Google Scholar 

  • Dicke, M. and Sabelis, M.W., Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Funct. Ecol., 1988, vol. 2, pp. 131–139.

    Article  Google Scholar 

  • Dinan, L., Phytoecdysteroids: biological aspects, Phytochemistry, 2001, vol. 57, no. 3, pp. 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, A.C.S. and de Pinho, P.G., Nor-isoprenoids profile during port wine ageing — influence of some technological parameters, Anal. Chem., 2004, no. 513, pp. 169–176.

    Google Scholar 

  • Fink, P., Ecological functions of volatile organic compounds in aquatic systems, Mar. Freshwater Behav. Physiol., 2007, vol. 40, no. 3, pp. 155–168.

    Article  CAS  Google Scholar 

  • Goldman, C., Impacts of climate change and global warming on Inland Waters, in 32nd Congr. Int. Soc. Limnol., Abstracts of Papers, Budapest, Hungary, August 4–9, 2013, p. 267.

  • Gross, E.M., Hilt, S., Lombardo, P., and Mulderij, G., Searching for allelopathic effects of submerged macrophytes on phytoplankton-state of the art and open questions, Hydrobiologia, 2007, vol. 584, pp. 77–88.

    Article  CAS  Google Scholar 

  • Gurevich, F.A., Relationship between the plants and fresh-water animal embryos, Dokl. Akad. Nauk SSSR, 1948, vol. 59, no. 3, pp. 569–572.

    Google Scholar 

  • Gurevich, F.A., Phytoncides of the water and coastal plants, and their role in hydrobiocenosises, Extended Abstract. of Doctoral (Biol.) Dissertation, Irkutsk: Irkut. Gos. Univ., 1973.

    Google Scholar 

  • Hao, Z.P., Wang, Q., Christie, P., and Li, X.L., Allelopathic potential of watermelon tissues and root exudates, Sci. Hort., 2007, vol. 112, no. 3, pp. 1673–1679.

    Article  Google Scholar 

  • Hegazy, A.K., Amer, W.M., and Khedr, A.A., Allelopathic effect of Nymphaea lotus L. on growth and yield of cultivated rice around Lake Manzala (Nile Delta), Hydrobiologia, 2001, vol. 464, pp. 133–142.

    Article  Google Scholar 

  • Hilt, S. and Gross, E.M., Can allelopathically active submerged macrophytes stabilize clear-water states in shallow lakes? Basic Appl. Ecol., 2008, vol. 9, pp. 422–432.

    Article  Google Scholar 

  • Hu, H. and Hong, Y., Algal-bloom control by allelopathy of aquatic macrophytes-a review, Front. Environ. Sci. Eng. China, 2008, vol. 2, no. 4, pp. 421–438.

    Article  Google Scholar 

  • Huber, D.P.W. and Bohlmann, J., The role of terpene synthases in the direct and indirect defense of conifers against insect herbivory and fungal pathogens, Multigen. Induced Syst. Resist. Plant., 2006, pp. 296–313. doi 10.1007/0-387-23266-4-13

    Chapter  Google Scholar 

  • Jaccard, P., Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines, Bull. Soc. Vaudoise Sci. Nat., 1901, vol. 37, no. 140, pp. 241–272.

    Google Scholar 

  • Jacobsen, D. and Sandjensen, K., Variability of invertebrate herbivore on the submerged macrophytes Potamogeton perfoliatus, Freshwater Biol., 1995, no. 34, pp. 357–365.

    Google Scholar 

  • Jüttner, F., Nor-carotenoids as the major volatile excretion products of Cyanidium, Z. Naturforsch., Ser. C, 1979, vol. 34, pp. 186–191.

    Google Scholar 

  • Jüttner, F., Messina, P., Patalano, C., and Zupo, V., Odor compounds of the diatom Cocconeis scutellum: effects on benthic herbivores living on Posidonia oceanica, Mar. Ecol.: Progr. Ser., 2010, vol. 400, pp. 63–73.

    Google Scholar 

  • Jüttner, F. and Watson, S.B., Biochemical and ecological control of ceosmin and 2-methylisoborneol in source waters, Appl. Environ. Microbiol., 2007, vol. 73, no. 14, pp. 4395–4406.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirpenko, N.I., Kurashov, E.A., and Krylova, Yu.V., Exogenous metabolic complexes of two blue-green algae in mono- and mixed cultures, Nauk. Zap. Ternop. Nats. Pedagog. Univ., Ser. Biol., 2010, no. 2(43), pp. 241–244.

    Google Scholar 

  • Korkishko, N.N., Krylova, Yu.V., Kurashov, E.A., Protopopova, E.V., Marinich, M.A., and Voyakina, E.Yu., Implementation of HPLC for study of organic compounds of different nature in water of Ladoga Lake and its basin, Ekol. Khim., 2001, vol. 10, no. 2, pp. 89–108.

    CAS  Google Scholar 

  • Korner, S. and Nicklisch, A., Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes, J. Phycol., 2002, vol. 38, pp. 862–871.

    Article  Google Scholar 

  • Kurashov, E.A., Anan’eva, E.P., and Krylova, Yu.V., Composition of low molecular weight organic compounds of Trametes pubescens and Flammulina velutipes mucelium, Mikol. Fitopatol., 2012b, vol. 46, no. 2, pp. 145–153.

    CAS  Google Scholar 

  • Kurashov, E.A. and Krylova, Yu.V., Low molecular secondary metabolites of higher aquatic plants and prospective control of autotrophic link in aquatic ecosystems, in Mater. XV Shkoly-konf. molodykh uchenykh “Biologiya vnutrennikh vod,” Borok, 19–24 oktyabrya 2013 g. (Proc. XV School-Conf. of Young Scientists “Inland Water Biology,” Borok, October 19–24, 2013), Kostroma: Kostr. Pechat. Dom, 2013, pp. 29–60.

    Google Scholar 

  • Kurashov, E.A., Krylova, Yu.V., Chernova, A.M., and Mitrukova, G.G., Component composition of lowmolecular volatile organic compounds of Nuphar lutea (Nymphaeaceae) at the beginning of vegetation, Voda: Khim. Ekol., 2013b, no. 5 (59), pp. 67–80.

    Google Scholar 

  • Kurashov, E.A., Krylova, Yu.V., and Mitrukova, G.G., Component composition of volatile organic low molecular weight compounds of Ceratophyllum demersum L. during fructification, Voda: Khim. Ekol., 2012a, no. 6, pp. 107–116.

    Google Scholar 

  • Kurashov, E.A., Krylova, Yu.V., and Mitrukova, G.G., Dynamics of essential oil composition in Potamogeton. pusillus (Potamogetonaceae) shoots during vegetation, Rastit. Resur., 2013a, vol. 49, no. 1, pp. 85–102.

    CAS  Google Scholar 

  • Lamikanra, O. and Richard, O.A., Effect of storage on some volatile aroma compounds in fresh-cut cantaloupe melon, J. Agric. Food Chem., 2002, vol. 50, pp. 4043–4047.

    Article  CAS  PubMed  Google Scholar 

  • Lanciotti, R., Belletti, N., Patrignani, F., Gianotti, A., Gardini, F., and Guerzoni, M.-E., Application of hexanal, (E)-2-hexenal, and hexyl acetate to improve the safety of fresh-sliced apples, J. Agric. Food Chem., 2003, vol. 51, pp. 2958–2963.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo, P., Mjelde, M., Brettum, P., and Ptacnik, R., How much submerged vegetation is needed for a stable clear-water state? in 3d Int. ASLO Meeting “Phytoplankton Biomass and Composition in Intermediately. Vegetated Shallow Lakes,” Nice, France, 2009. http://www.sgmeet.com/aslo/nice2009/viewabstract2.asp?AbstractID=4173

    Google Scholar 

  • MacÍas, F.A., Galindo, J.L.G., Garcia-Diaz, M.D., and Galindo, J.C.G., Allelopathic agents from aquatic ecosystems: potential biopesticides models, Phytochem. Rev., 2008, vol. 7, pp. 155–178.

    Article  Google Scholar 

  • Miller, A.E.M. and Heyland, A., Endocrine interactions between plants and animals: Implications of exogenous hormone sources for the evolution of hormone signaling, Gen. Comp. Endocrinol., 2010, vol. 166, pp. 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Mjelde, M. and Faafeng, B.A., Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude, Freshwater Biol., 1997, vol. 37, pp. 355–365.

    Article  Google Scholar 

  • Munhjargal, N., Ecdysteroid-containing plants of Western Mongolia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Tomsk, 2009.

    Google Scholar 

  • Nakai, S., Inoue, Y., Hosomi, M., and Murakami, A., Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa, Water Res., 2000, vol. 34, no. 11, pp. 3026–3032.

    Article  CAS  Google Scholar 

  • Nakai, S., Yamada, S., and Hosomi, M., Anti-cyanobacterial fatty acids released from Myriophyllum spicatum, Hydrobiologia, 2005, vol. 543, pp. 71–78.

    Article  CAS  Google Scholar 

  • Nylund, G.M., Persson, F., Lindegarth, M., Cervin, G., Hermansson, M., and Pavia, H., The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defense, FEMS Microbiol. Ecol., 2010, vol. 71, pp. 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, R.C., Anaya, A.L., and Ramos, L., Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon, J. Chem. Ecol., 1988, vol. 14, no. 1, pp. 71–86.

    Article  Google Scholar 

  • Pickett, J.A., Birkett, M.A., Bruce, T.J.A., Chamberlain, K., Gordon-Weeks, R., Matthes, M.C., Moraes, C.B., Napier, J.A., Smart, L.E., Wadhams, L.J., and Woodcock, C.M., cis-Jasmonate as an allelopathic agent through plant defense induction. http://www.regional.org.au/au/allelopathy/2005/1/3/2481-pickettja.htm

  • Plemenkov, V.V., Khimiya izoprenoidov (Chemistry of Isoprenoids), Barnaul: Altai. Gos. Univ., 2007.

    Google Scholar 

  • Putnam, A.R., Allelopathic chemicals, Chem. Eng. News, 1983, vol. 61, pp. 34–45.

    Article  CAS  Google Scholar 

  • Qiming, X., Haidong, C., Huixian, Z., and Daqiang, Y., Chemical composition of essential oils of two submerged macrophytes, Ceratophyllum demersum L. and Vallisneria spiralis L., Flavour Fragr. J., 2006a, vol. 21, pp. 524–526.

    Article  Google Scholar 

  • Qiming, X., Haidong, C., Huixian, Z., and Daqiang, Y., Allelopathic activity of volatile substance from submerged macrophytes on Microcystin aeruginosa, Acta. Ecol. Sin., 2006b, vol. 26, no. 11, pp. 3549–3554.

    Article  Google Scholar 

  • Radulović, N., Dekić, M., and Stojanović-Radić, Z., Chemical composition and antimicrobial activity of the volatile oils of Geranium sanguineum L. and G. robertianum L. (Geraniaceae), Med. Chem. Res., 2012, no. 21, pp. 601–615.

    Google Scholar 

  • Rajendran, G., Ramakrishnan, S., and Subramanian, S., Cropguard-a botanical nematicide for the management of Meloidogyne arenaria and Rotylenchulus reniformis in groundnut, in Proc. Natl. Symp. “Biodiversity. and Management of Nematodes in Cropping Systems for. Sustainable Agriculture,” Jaipur, India, 2003, pp. 122–125.

    Google Scholar 

  • Ramirez-Garsia, P., Improvement of water quality in a reservoir as result of the installation of floating macrophytes islands, in 32d Congr. Int. Soc. Limnol., Abstracts. of Papers, Budapest, Hungary, August 4–9, 2013, p. 159.

  • Rastitel’nye resursy SSSR: Tsvetkovye rasteniya, ikh. khimicheskii sostav, ispol’zovanie (The Herbaceous Resources of USSR: Flowering Plants, Their Chemical Composition and Implementation), Leningrad: Nauka, 1984–1993, vols. 1–7.

  • Rastitel’nye resursy Rossii i sopredel’nykh gosudarstv. Tsvetkovye rasteniya, ikh khimicheskii sostav, ispol’zovanie. Semeistva Butomaceae-Typhaceae (The Plant Resources of Russia and Neighboring Countries. Flowering Plants, Their Chemical Composition and Implementation. Families Butomaceae-Typhaceae), St. Petersburg: Nauka, 1994, vol. 8.

  • Rice, E., Allelopathy, New York: Academic Press, 1974.

    Google Scholar 

  • Roy, R.N., Laskar, S., and Sen, S.K., Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2, Microbiol. Res., 2006, vol. 161, no. 2, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Saito, K., Matsumoto, M., Sekine, T., and Murakashi, J., Inhibitory substances form Myriophyllum brasiliense on growth of blue-green algae, J. Nat. Prod., 1989, vol. 52, no. 6, pp. 1221–1226.

    Article  CAS  Google Scholar 

  • Sakevich, A.I., Ekzometabolity presnovodnykh vodoroslei (Exometabolites of Freshwater Algae), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  • Sirenko, L.A. and Kozitskaya, V.N., Biologicheski aktivnye. veshchestva vodoroslei i vody (Biologically Active Compounds of Algae and Water Quality), Kiev: Naukova Dumka, 1988.

    Google Scholar 

  • Sørensen, T.A., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons, K. Dan. Vidensk. Selsk., 1948, vol. 5, pp. 1–34.

    Google Scholar 

  • Stewart, I. Seawright, A.A., and Shaw, G.R., Cyanobacterial poisoning in livestock, wild mammals and birdsan overview, in Advances in Experimental Medicine and. Biology: Cyanobacterial Harmful Algal Blooms: State of. the Science and Research Needs, Hudnell, H.K., Ed., New York: Springer, 2008, no. 619, pp. 613–637.

    Chapter  Google Scholar 

  • Sun, S.-M., Chung, G.-H., and Shin, T.-S., Volatile compounds of the green alga, Capsosiphon fulvescens, J. Appl. Phycol., 2011. doi 10.1007/s10811-011-9724-x

    Google Scholar 

  • Telitchenko, M.M. and Ostroumov, S.A., Vvedenie v problemy biokhimicheskoi ekologii: biotekhnologiya, sel’skoe. khozyaistvo, okhrana sredy (Introduction into the Problems of Biochemical Ecology: Biotechnology, Agriculture, and Environment Protection), Moscow: Nauka, 1990.

    Google Scholar 

  • Timofeev, N.P., Achievements and problems in study, implementation, and forecasting of biological activity of ecdysteroids, Butlerov. Soobshch., 2006, vol. 8, no. 2, pp. 7–35.

    Google Scholar 

  • Tokin, B.P., Über die mitogenetischen Strahlen und die Lisegangschen Ringe, Biol. Zentralblatt, 1930, vol. 50, no. 11, pp. 641–671.

    Google Scholar 

  • Van den Berg, M.S., Coops, H., Meijer, M.-L., Scheffer, M., and Simons, J., Clear water associated with a dense Chara vegetation in the shallow and turbid lake Veluwemeer, The Netherlands, in The Structuring. Role of Submerged Macrophytes in Lakes, Jeppesen, E., Sondergaard, Ma., Sondergaard, Mo., and Christoffersen, K., Eds., New York: Springer, 1998, pp. 339–352.

    Chapter  Google Scholar 

  • Venci, F.V. and Morton, T.C., The shield defense of the sumac flea beetle, Blepharida rhois (Chrysomelidae: Alticinae), Chemoecology, 1998, vol. 8, pp. 25–32.

    Article  Google Scholar 

  • Waridel, P., Wolfender, J.-L., Lachavanne, J.-B., and Hostettmann, K., Entlabdane diterpenes from the aquatic plant Potamogeton pectinatus, Phytochemistry, 2003, vol. 64, pp. 1309–1317.

    Article  CAS  PubMed  Google Scholar 

  • Watson, S.B., Caldwell, G., and Pohnert, G., Fatty acids and oxylipins as semiochemicals, in Lipids in Aquatic. Ecosystems, Springer, 2009, pp. 65–91.

    Chapter  Google Scholar 

  • Whittaker, R.H. and Feeny, P.P., Allelochemics: chemical interactions between species, Science, 1971, vol. 171, pp. 757–770.

    Article  CAS  PubMed  Google Scholar 

  • Wium-Andersen, S., Anthoni, U., Christophersen, C., and Houen, G., Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales), Oikos, 1982, vol. 39, pp. 187–190.

    Article  Google Scholar 

  • Xuan, T.D., Chung, M., Khanh, T.D., and Tawata, S., Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates, J. Chem. Ecol., 2006, vol. 32, pp. 895–906.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.Y. and Sun, W.H., Isolation and identification of antialgal compounds from root system of water hyacinth, Acta Photophysiol. Sin., 1992, vol. 18, no. 4, pp. 399–402.

    CAS  Google Scholar 

  • Zhang, T.-T., Zheng, Ch.-Y., Hu, W., et al., The allelopathy and allelopathic mechanism of phenolic acids on toxic Microcystis aeruginosa, J. Appl. Phycol., 2010, vol. 22, pp. 71–77.

    Article  Google Scholar 

  • Zhou, S., Nakai, S., Hosomi, M., Sezaki, Y., and Tominaga, M., Allelopathic growth inhibition of cyanobacteria by reed, Allelopathy J., 2006, vol. 18, no. 2, pp. 277–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kurashov.

Additional information

Original Russian Text © E.A. Kurashov, J.V. Krylova, G.G. Mitrukova, A.M. Chernova, 2014, published in Sibirskii Ekologicheskii Zhurnal, 2014, Vol. 21, No. 4, pp. 573–592.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurashov, E.A., Krylova, J.V., Mitrukova, G.G. et al. Low-molecular-weight metabolites of aquatic macrophytes growing on the territory of Russia and their role in hydroecosystems. Contemp. Probl. Ecol. 7, 433–448 (2014). https://doi.org/10.1134/S1995425514040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425514040064

Keywords

Navigation