Skip to main content
Log in

Modern Phenolic Adhesives for Aviation and Engineering. Part 2. Chemical Modification

  • Published:
Polymer Science, Series D Aims and scope Submit manuscript

Abstract

The review addresses methods for modification of phenolic resins via introducing reactive compounds into synthesis and the reactions of hydroxyl phenolic and methylol groups which allow the preparation of adhesives with improved performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. A. Aronovich and A. P. Petrova, “Modern phenolic adhesives. Part I. Influence of modifying additives,” Polymer Science, Series D 16, 777–792 (2023).

  2. C. P. R. Nair, “Non-conventional phenolic resins—an overview on recent advances,” J. Sci. Ind. Res. 61, 17–33 (2002).

    CAS  Google Scholar 

  3. C. P. R. Nair, “Advances in addition-cure phenolic resins,” Prog. Polym. Sci. 29, 401–498 (2004).

    Article  CAS  Google Scholar 

  4. L. Pilato, “Resin Chemistry,” in Phenolic Resins: A Century of Progress (Springer, New York, 2010).https://doi.org/10.1007/978-3-642-04714-5_4.

  5. A. Puzari, “Novolac Resin: Novel Functional Materials,” in Chemistry of Phenolic Compounds: State of the Art, Ed. by J. B. Baruah (Nova Science Publish., 2010).

    Google Scholar 

  6. K. Tang, A. Zhang, T. Ge, et al., “Research progress on modification of phenolic resin,” Mater. Today Commun. 2020, 101879 (2020).

    Google Scholar 

  7. A. P. Aliyeva, “Composite materials based on phenol formaldehyde resins,” Prom. Proizvod. Ispolzov. Elastomerov, No. 1, 34–43 (2021).

    Google Scholar 

  8. Y. Xu, L.Guo, H. Zhang, et al., “Research status, industrial application demand and prospects of phenolic resin,” RSC Adv. 9, 28924–28935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. Qiao, S. Li, G. Guo, et al., “Synthesis and characterization of phenol-formaldehyde resin using enzymatic hydrolysis lignin,” J. Ind. Eng. Chem. 21, 1417–1422 (2015).

    Article  CAS  Google Scholar 

  10. Y. Zhang, N. Li, Z. Chen, et al., “Synthesis of high-water-resistance lignin-phenol resin adhesive with furfural as a crosslinking agent,” Polymers 12, 2805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Jia, F. Song, Q. Li, et al., “Recent development of cardanol based polymer materials—A review,” J. Renewable Mater. 7, 601–619 (2019).

    Article  CAS  Google Scholar 

  12. H. Kumar, S. K. Tripathi, S. Mistry, and G. Bajpai, “Synthesis, characterization and application of coatings based on epoxy novolac and liquid rubber blend,” E-J. Chem. 6, 1253–1259 (2009).

    Article  CAS  Google Scholar 

  13. A. K. Tiwari, H. Kumar, R. Bajpai, and S. K. Tripathi, “Preparation of blends of epoxidised novolac resin and carboxylic terminated polybutadiene (CTPB) liquid rubber and evaluation of their physico-chemical characteristic,” J. Chem. Pharm. Res. 2, 172–178 (2010).

    CAS  Google Scholar 

  14. V. D. Ramos, H. M. Costa, V. L. P. Soares, and S. V. R. Nascimento, “Modification of epoxy resin: A comparison of different types of elastomer,” Polym. Test. 24, 387–394 (2005).

    Article  CAS  Google Scholar 

  15. C. Gouri, R. Ramaswamy, and K. Ninan, “Studies on the adhesive properties of solid elastomer-modified novolac epoxy resin,” Int. J. Adhes. Adhes. 20, 305–314 (2000).

    Article  CAS  Google Scholar 

  16. C. Gouri, “Elastomer modification of epoxy based film adhesives: adhesive and mechanical properties,” J. Adhes. Sci. Technol. 16, 1569–1583 (2002).

    Article  CAS  Google Scholar 

  17. C. M. Bhuvaneswari, S. S. Kale, G. Gouda, P. Jayapal, and K. Tamilmani, “Elastomers and Adhesives for Aerospace Applications,” in Aerospace Materials and Material Technologies (Springer, Singapore, 2017).

    Google Scholar 

  18. M. S. Trizno and E. V. Moskalev, Adhesives and Binding (Khimiya, Leningrad, 1980) [in Russian].

    Google Scholar 

  19. E. M. Rodionova, B. A. Zaitsev, and M. S. Trizno, “Modification of epoxy-novolac block copolymers with Rolivsan,” Zh. Prikl. Khim. 65, 2295–2299 (1992).

    CAS  Google Scholar 

  20. A. Salimi, H. Omidian, and M. J. Zohuriaan-Mehr, “Mechanical and thermal behavior of modified epoxy-novolak film adhesives,” J. Adhes. Sci. Technol. 17, 1847–1861 (2003).

    Article  CAS  Google Scholar 

  21. Technical Data Sheet Loctite R EA 9497 TM. http://tds-loctite-ea-9497-ru-2014.pdf.

  22. O. Chailee, T. Parnklang, P. Mora, et al., “Epoxy-based composite adhesives with improved lap shear strengths at high temperatures for steel-steel bonded joints,” J. Appl. Polym. Sci. 137, 49371 (2020).

    Article  CAS  Google Scholar 

  23. K. R. Akhmadieva, R. R. Mukhametov, E. V. Dolgova, and Yu. I. Merkulova, “Heat-resistant film adhesive for structural purposes,” Nov. Materialoved. Nauka Tekh., No. 2, 57–63 (2016).

  24. L. Huang, C. Wang, and Y. Lu, “Thermal and moisture adsorption properties of cyanate ester modified epoxy resin and fiber-glass composites,” J. Reinf. Plast. Compos. 27, 725–738 (2008).

    Article  CAS  Google Scholar 

  25. R. Pal, S. Sudhi, and R. Raghavan, “Fabrication and evaluation of structural film adhesive using oxazolidinone modified novolac epoxy resin,” J. Appl. Polym. Sci. 136, 47520 (2019). https://doi.org/10.1002/app.47520

    Article  CAS  Google Scholar 

  26. Safety Data Sheet. http://msds-loctite-ea-3478-2020.pdf.

  27. A. M. Atta, M. I. Abdou, A.-A. A. Elsayed, and M. E. Ragab, “New bisphenol novolac epoxy resins for marine primer steel coating applications,” Prog. Org. Coat. 63, 372–376 (2008).

    Article  CAS  Google Scholar 

  28. R. Mirski, D. Dziurka, and J. Łęcka, “Propertries of alcohol-modified PF resin used in the production of wood-based materials,” Electron. J. Pol. Agric. Univ. 8, No. 22 (2005).

  29. M. H. Choi, H. Y. Byun, and I. J. Chung, “The effect of chain length of flexible diacid on morphology and mechanical property of modified phenolic resin,” Polymer 43, 4437–4444 (2002).

    Article  CAS  Google Scholar 

  30. P. S. Parameswaran, PhD Thesis (Cochin Univ. Sci. Technol., India, 2009).

  31. M. N. Amiraslanova, A. M. Mustafaev, R. A. Rustamov, et al., “Synthesis of nitrogen-containing phenol-formaldehyde oligomers grafted with vegetable oils,” Plast. Massy, Nos. 3–4, 28–31 (2017).

    Google Scholar 

  32. M. N. Amiraslanova, A. M. Mustafaev, M. D. Ibragimova, et al., “Study of the physical and mechanical properties of protective coatings based on nitrogen-containing monoalkyl (C8–C12) phenol-formaldehyde oligomers grafted with soybean oil,” Plast. Massy, Nos. 11–12, 47–49 (2018).

    Google Scholar 

  33. L. Guo, L. Wang, and J. Li, “Study on modification of phenol formaldehyde resin adhesive with ionic liquid /,” in Proceedings of the 2nd International Conference on Electronic and Mechanical Engineering and Information Technology, 2012, pp. 1910–1913. https://www.atlantis-press.com/article/3640.pdf

  34. Sh.-ch. Qi, G. Han, H.-r. Wang, et al., “Synthesis and characterization of carborane bisphenol resol phenolic resins with ultrahigh char yield,” Chin. J. Polym. Sci. 33, 1606–1617 (2015). https://doi.org/10.1007/s10118-015-1712-1

  35. P. M. Valetskii and A. P. Petrova, “Polymer adhesives based on carborane-containing compounds,” Trudy VIAM (2004). https://viam.ru/sites/default/files/scipub/2004/2004-204186.pdf.

  36. J. Gao, Y. Liu, and F. Wang, “Structure and properties of boron-containing bisphenol-a formaldehyde resin,” Eur. Polym. J. 37, 207–210 (2001).

    Article  Google Scholar 

  37. Y. Zhu, Q. Zhang, X. Meng, et al., “Adhesive joint properties of advanced carbon/ceramic composite and tungsten–copper alloy for the hybrid rocket nozzle,” Int. J. Adhes. Adhes. 102, 102670 (2020).

  38. J. Gao, X. Su, and L. Xia, “Synthesis and structure characterization of boron-nitrogen containing phenol formaldehyde resin,” Int. J. Polym. Mater. 54, 949–961 (2005). https://doi.org/10.1080/009140390504762

    Article  CAS  Google Scholar 

  39. S. Wang, X. Jing, Y. Wang, and J. Si, “Synthesis and characterization of novel phenolic resins containing aryl-boron backbone and their utilization in polymeric composites with improved thermal and mechanical properties,” Polym. Adv. Technol. 25, 152–159 (2014). https://doi.org/10.1002/pat.3216

    Article  CAS  Google Scholar 

  40. J. Gao, X. Li, W. Wu, and H. Lin, “Octa(aminophenyl) polyhedral oligomeric silsesquioxane/boron-containing phenol-formaldehyde resin nanocomposites: synthesis, cured, and thermal properties,” Polym. Compos. 32, 829–836 (2011). https://doi.org/10.1002/pc.21105

    Article  CAS  Google Scholar 

  41. C. P. R. Nair, D. Mathew, and K. N. Ninan, “Imido-phenolictriazine network polymers derived from maleimide-functional novolac,” Eur. Polym. J. 37, 315–321 (2001).

    Article  Google Scholar 

  42. C. P. R. Nair, R. L. Bindu, and K. N. Ninan, “Phenolic resins bearing maleimide functions; synthesis and characterization,’ J. Polym. Sci., Part A: Polym. Chem. 38, 641–652 (2000).

    Article  Google Scholar 

  43. C. Gouri and R. Ramaswamy, “Adhesive and thermal characteristics of maleimide-functional novolac resins,” J. Appl. Polym. Sci. 73, 695–105 (1999).

    Article  CAS  Google Scholar 

  44. C. Gouri, C. P. R. Nair, and R. Ramaswamy, “Effect of elastomer modification on the adhesive characteristics of maleimide-functional phenolic resins,” J. Appl. Polym. Sci. 74, 2321–2332 (1999).

    Article  CAS  Google Scholar 

  45. S. A. Moroz, S. G. Gorbachev, and O. V. Chekina, “Structure and properties of allylphenol-formaldehyde resins,” Plast. Massy, No. 8, 34–35 (1987).

    Google Scholar 

  46. C. Gouri, C. P. R. Nair, and R. Ramaswamy, “Adhesive characteristics of alder-ene adduct of diallyl bisphenol A novolac and bisphenol A bismaleimide,” High Performance Polymers 12, 497–514 (2000).

    Article  CAS  Google Scholar 

  47. Y. Yan, X. Shi, J. Liu, et al., “Thermosetting resin system based on novolak and bismaleimide for resin-transfer molding,” J. Appl. Polym. Sci. 83, 1651–1657 (2002).

    Article  CAS  Google Scholar 

  48. C. Gouri, C. P. R. Nair, and R. Ramaswamy, “High-temperature adhesives based on alder-ene reaction of diallyl bisphenol A novolac and bismaleimide: effect of BMI structure and novolac molar mass,” Polym. Polym. Compos. 11, 311–320 (2003). https://doi.org/10.1177/096739110301100406

    Article  CAS  Google Scholar 

  49. A. Gu, G. Liang. and L. Lan, “Modification of polyaralkyl[-phenolic resin and its copolymer with bismaleimide,” J. Appl. Polym. Sci. 59, 975–979 (1996).

    Article  CAS  Google Scholar 

  50. J. Hao, W. Rumin, F. Shameel, and Zh. Shuirong. “Properties and curing behavior of reactive blended allyl novolak with bismaleimide using dicumyl peroxide as a novel curing agent,” J. Appl. Polym. Sci. 132 (2015).

  51. A. P. Petrova and G.V. Malysheva, Glue, Adhesive Binder and Adhesive Prepregs: Tutorial (VIAM, Moscow, 2017) [in Russian].

    Google Scholar 

  52. A. P. Petrova and V. M. Buznik, “Performance of adhesives and materials based on them in conditions close to the coastal conditions of the Arctic,” in Proceedings of the Scientific and Technical Conference on Adhesive Materials (VIAM, Moscow, 2016), pp. 13–21.

  53. B. K. Kandola, L. Krishnan, D. Deli, et al., “Fire and mechanical properties of a novel free-radically cured phenolicresin based on a methacrylate-functional novolac and of its blends with an unsaturated polyester resin,” RSC Adv., No. 43, 1–32 (2015).

  54. C. P. R. Nair, V. Dhanya, and C. Gouri, “Dual cure propargyl novolac-epoxy resins: synthesis and properties,” Polym. Polym. Compos. 12, 43–53 (2004).

    Article  CAS  Google Scholar 

  55. M. I. Shatirova and T. M. Naibova, “Synthesis of glycidyl and thioglycidyl ethers of the diacetylene series and their use as a modifier of phenol-formaldehyde oligomers,” Izv.Vyssh. Ucheb. Zaved. Ser. Khim. 62, 61–69 (2019).

    Article  CAS  Google Scholar 

  56. K. Tang, A. Zhang, T. Ge, et al., “Research progress on modification of phenolic resin,” Mater. Today Commun. 101879 (2020).

  57. S. Li, Y. Han, F. Chen, et al., “The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin,” Polym. Degrad. Stab. 124, 68–76 (2016). https://doi.org/10.1016/j.polymdegradstab.2015

    Article  CAS  Google Scholar 

  58. C. Wang and Y. Huang, “Study on preparation thermosetting phenolic resin modified with silicone and its adhesive properties,” Acta Mater. Compos. 21, 50–54 (2004).

    Google Scholar 

  59. S. Li, H. Li, Z. Li, et al., “Polysiloxane modified phenolic resin with co-continuous structure,” Polymers 120, 217–222 (2017).

  60. S. Li, F. Chen, Y. Han, et al., “Enhanced compatibility and morphology evolution of the hybrids involving phenolic resin and silicone intermediate,” Mater. Chem. Phys. 165, 25–33 (2015). https://doi.org/10.1016/j.matchemphys.2015.07

    Article  CAS  Google Scholar 

  61. J. Yun, L. Chen, X. Zhang, et al., “Synthesis and structure evolution of phenolic resin silicone hybrid composites with improved thermal stability,” J. Mater. Sci. 53, 14185–14203 (2018). https://doi.org/10.1007/s10853-018-2384-3

    Article  CAS  Google Scholar 

  62. CN Patent No. CN104151556 (2014).

  63. B. Li, C. He, M. Cao, et al., “Highly branched phenolic resin-grafted silicone rubber copolymer for high efficiency ablation thermal protection coating,” J. Appl. Polym. Sci. 137, 48353 (2020).

    Article  CAS  Google Scholar 

  64. Y. Du, Y. Xia, Z. Luo, et al., “An addition-curable hybrid phenolic resin containing silicon and boron with improved thermal stability,” Polym. Degrad. Stab. 189, 109599 (2021).

  65. A. M. Kawamoto, L. C. Pardini, M. F. Diniz, et al., “Synthesis of a boron modified phenolic resin,” J. Aerospace Technol Manage. 2, 169–182 (2010). https://doi.org/10.5028/jatm.2010.02027610

    Article  CAS  Google Scholar 

  66. F. Wang, Z. Huang, G. Zhang, and Y. Li, “Preparation and thermal stability of heat-resistant phenolic resin system constructed by multiple heat-resistant compositions containing boron and silicon. High performance,” Polymers 29, 493–498 (2016).

    Google Scholar 

  67. M. Gao, W. Wu, and Y. Wang, “Phenolic foam modified with dicyandiamide as toughening agent,” J. Therm. Anal. Calorim. 124, 189–195 (2015). https://doi.org/10.1007/s10973-015-5156-1

    Article  CAS  Google Scholar 

  68. V. M. Abbasov, M. N. Amiraslanova, N. R. Abdullaeva, et al., “Study of the structure and mechanism of synthesis of novolac phenol-formaldehyde oligomers modified with imidazolines based on natural petroleum acids and polyamines using IR spectroscopy,” Plast. Massy, Nos. 1–2, 18–21 (2019).

    Google Scholar 

  69. Abdullaeva N.R., M. N. Amiraslanova, L. I. Alieva, et al., “Study of physicochemical and thermal properties of phenol-formaldehyde oligomers modified with imidazolines,” Plast. Massy, Nos. 9–10, 7–10 (2018).

  70. H. Li, J. Gu, D. Wang, et al., “Study on benzoxazine-based film adhesive and its adhesion properties with CFPR composites,” J. Adhes. Sci. Technol. 31, 1796–1806 (2017).

    Article  CAS  Google Scholar 

  71. H. Li, L. Zhao, Y. Qiao, et al., “Toughening of Benzoxazine Structural Adhesives and Surface Films,” J. Adhes. Sci. and Technol, 1–15 (2022). https://doi.org/10.1080/01694243.2022.2041227

  72. A. Kowalczyk, M. Tokarczyk, M. Weisbrodt, and K. Gziut, “Adhesive films based on benzoxazine resins and the photoreactive epoxyacrylate copolymer,” Materials 15, 1839 (2022). https://doi.org/10.3390/ma15051839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M. A. Espinosa, V. Cadiz, and M. Galia, “Synthesis and characterization of benzoxazine-based phenolic resins: crosslinking study,” J. Appl. Polym. Sci. 90, 470–481 (2003).

    Article  CAS  Google Scholar 

  74. H. Kimura, A. Matsumoto, and K. Ohtsuka, “New type of phenolic resin: curing reaction of phenol-novolac based benzoxazine with bisoxazoline or epoxy resin using latent curing agent and the properties of the cured resin,” J. Appl. Polym. Sci. 112, 1762–1770 (2009).

    Article  CAS  Google Scholar 

  75. D. Zhang, X.Liu, X. Bai, et al., “Synthesis, characterization and properties of phthalonitrile-etherified resole resin,” e-Polymers (2020). https://doi.org/10.1515/epoly-2020-0051

  76. R. Mohammad-Rezaei, B. Massoumi, M. Abbasian, et al., “Electrically conductive adhesive based on novolac-grafted polyaniline: Synthesis and characterization,” J. Mater. Sci.: Mater. Electron. 30, 2821–2828 (2019).

    CAS  Google Scholar 

  77. K. Takemura and H. Nakao, “Development and applications of functional phenolic resins,” JFE Technical Report No. 27 (2022). (pdf jfe-steel.co.jp).

  78. A. V. Petrov and V. B. Kovalev, “Preparation of new copolymers of polyphenolmethylenepolyphenylcarbamates by condensation of phenol and tert-butyl-N-phenylcarbamate with formaldehyde in the presence of N-toluenesulfonic acid,” in Proceedings of the International Scientific Conference on Innovative Technologies in Management, Education, and Industry (ASTINTEKh-2012), Astrakhan’, 2012, pp. 10–13.

  79. L. N. Machulenko, S. A. Donetskaya, and M. I. Buzin, “Phenol-formaldehyde copolymers containing card groups,” Plast. Massy, Nos. 11–12, 10–16 (2019).

    Google Scholar 

  80. G. I. Konishi, T. Tajima, T. Kimura, et al., “Direct synthesis of functional novolacs and their polymer reactions,” Polym. J. 42, 443–449 (2010).

    Article  CAS  Google Scholar 

  81. D. Lee, H. Hwang, J.-S. Kim, et al., “VATA: poly(vinyl alcohol) and tannic acid-based nontoxic underwater adhesive,” ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c02037

  82. B. Cheng, J. Yu, T. Arisawa, et al., “Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups,” Nature Commun. 13, 1892 (2022). https://doi.org/10.1038/s41467-022-29427-w

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Aronovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronovich, D.A., Petrova, A.P. Modern Phenolic Adhesives for Aviation and Engineering. Part 2. Chemical Modification. Polym. Sci. Ser. D 16, 840–854 (2023). https://doi.org/10.1134/S1995421223040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995421223040044

Keywords:

Navigation