Skip to main content
Log in

Heterotrophic Flagellates from Mires of the North Caucasus, Russia

  • BIOLOGY, MORPHOLOGY, AND SYSTEMATICS OF HYDROBIONTS
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The species composition and morphology of heterotrophic flagellates from various mire biotopes of the Kabardino-Balkarian Republic and the Republic of North Ossetia–Alania have been studied; 66 species and forms have been found. The most common species are Neobodo designis, Goniomonas truncata, Ancyromonas sigmoides, Bodo saltans, Jenningsia fusiforme, and Rhynchomonas nasuta. High species diversity has been recorded in samples from Hypnales and Sphagnum mosses, while unique communities of flagellates have been formed in bottom sediments. All identified species are new for the Kabardino-Balkarian Republic and 26 are new for the Republic of North Ossetia–Alania. The cell morphology of twelve species have been described: Salpingoeca angulosa, Phalansterium solitarium, Protaspa gemmifera, Spongomonas uvella, Thaumatomastix triangulata, Cafeteria ligulifera, Paraphysomonas ovalis, Arthropyxis annulata, Parabodo nitrophilus, Petalomonas aff. carinata, Scytomonas pusilla, and Sphenomonas teres. The data on the morphology of the species under study supplement our knowledge of the intraspecific variability of flagellates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Al-Yamani, F.Y. and Saburova, M.A., Illustrated Guide on the Flagellates of Kuwaits Intertidal Soft Sediments, Kuwait: Kuwait Institute for Scientific Research, 2010.

    Google Scholar 

  2. Arndt, H., Dietriech, D., Auer, B., et al., Functional diversity of heterotrophic flagellates in aquatic ecosystems, in The Flagellates: Unity, Diversity and Evolution, London: Taylor and Francis, 2000, p. 240.

    Google Scholar 

  3. Auer, B. and Arndt, H., Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season, Freshwater Biol., 2001, vol. 46, no. 7, p. 959. https://doi.org/10.1046/j.1365-2427.2001.00730.x

    Article  Google Scholar 

  4. Bicudo, C.E. and Bicudo, D.D.C., Some new and rare Euglenophyceae from the state of São Paulo, southern Brazil, Acta Bot. Bras., vol. 1, no. 1, p. 43. https://doi.org/10.1590/S0102-33061987000100005

  5. Botch, M.S. and Mazing, V.V., Ekosistemy bolot SSSR (Ecosystems of Mires of the USSR), Leningrad: Nauka, 1979.

  6. Bouillon, V.V., Nikulina, V.N., Pavel’eva, E.B., et al., Microbial “loop” in the trophic web of lacustrine plankton, Zh. Obshch. Biol., 1999, vol. 60, no. 4, p. 431.

    Google Scholar 

  7. Bush, N.A., On mires of lacustrine origin in Balkaria and Digoria (Central Caucasus), Tr. Bot. Muz. Akad. Nauk SSSR, 1932, vol. 25, p. 7.

    Google Scholar 

  8. Cavalier-Smith, T., Chao, E.E., and Vickerman, K., New phagotrophic euglenoid species (new genus Decastava; Scytomonas saepesedens; Enthosiphon oblongum), Hsp 90 introns, and putative euglenoid Hsp90 pre-m RNA insertional editing, Eur. J. Protistol., 2016, vol. 51, p. 147. https://doi.org/10.1016/j.ejop.2016.08.002

    Article  Google Scholar 

  9. Domaizon, I., Viboud, S., and Fontvieille, D., Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy—importance of mixotrophy, FEMS Microbiol. Ecol., 2003, vol. 46, no. 3, p. 317. https://doi.org/10.1016/S0168-6496(03)00248-4

    Article  CAS  PubMed  Google Scholar 

  10. Ekelund, F., A study of the soil flagellate Phalansterium solitarium Sandon 1924 with preliminary data on its ultrastructure, Protistology, 2002, vol. 2, no. 3, p. 152.

    Google Scholar 

  11. Fenchel, T. and Harrison, P., The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J.M. and McFadyen, A., Eds., Oxford: Blackwell, 1976, p. 285.

    Google Scholar 

  12. Philippov, D.A., Specific features of structural organization of hydrobiocenoses in different-type of mire water bodies and water courses, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2017, no. 79 (82), p. 251. https://doi.org/10.24411/0320-3557-2017-10063

  13. Philippov, D.A., Prokin, A.A., and Przhiboro, A.A., Metody i metodiki gidrobiologicheskogo issledovaniya bolot: uchebnoe posobie (Methods and methodology of hydrobiological study of mires: tutorial), Tyumen: Tyumen. Gos. Univ., 2017.

  14. France, R.H., Neue flagellaten des Plattensee’s, Terme’szetrajzi Fuzetek. Revue, 1893, vol. 16, nos. 3–4, p. 159.

    Google Scholar 

  15. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9.

    Google Scholar 

  16. Kats, N.Ya., Bolota zemnogo shara (Swamps of the Earth), Moscow: Nauka, 1971.

  17. Kent, W.S., A Manual of the Infusoria: Including a Description of All Known Flagellate, Ciliate, and Tentaculiferous Protozoa, British and Foreign, and an Account of the Organization and the Affinities of the Sponges, David Bogue: London, 1880, vol. 1, p. 1.

    Google Scholar 

  18. Kiss, A.K., Acs, E., Kiss, K.T., and Török, J.K., Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary), Eur. J. Protistol., 2009, vol. 45, no. 2, p. 121. https://doi.org/10.1016/j.ejop.2008.08.002

    Article  PubMed  Google Scholar 

  19. Klebs, G., Flagellatenstudien. Theil. II, Akadem. Verlag-Ges., 1893, p. 353.

    Google Scholar 

  20. Kristiansen, J. and Preisig, H.R., Encyclopedia of Chrysophyte genera, Bibl. Phycol., 2001, vol. 110, p. 1.

    Google Scholar 

  21. Lackey, J.B., Three new colorless Euglenophyceae from marine situations, Arch. Mikrobiol., 1962, vol. 42, no. 2, p. 190. https://doi.org/10.1007/BF00408174

    Article  CAS  PubMed  Google Scholar 

  22. Larsen, J. and Patterson, D.J., Some flagellates (Protista) from tropical marine sediments, J. Nat. Hist., 1990, vol. 24, no. 4, p. 801. https://doi.org/10.1080/00222939000770571

    Article  Google Scholar 

  23. Lee, W.J., Some free-living heterotrophic flagellates from marine sediments of Inchon and Ganghwa Island, Korea, Korean J. Biol. Sci., 2002, vol. 6, no. 2, p. 125. https://doi.org/10.1080/12265071.2001.9647643

    Article  Google Scholar 

  24. Lee, W.J., Some free-living heterotrophic flagellates from marine sediments of tropical Australia, Ocean Sci. J., 2006, vol. 41, no. 2, p. 75. https://doi.org/10.1007/BF03022413

    Article  Google Scholar 

  25. Lee, W.J., Free-living benthic heterotrophic euglenids from Botany Bay, Australia, Mar. Biol. Res., 2012, vol. 8, no. 1, p. 3. https://doi.org/10.1080/17451000.2011.596545

    Article  Google Scholar 

  26. Lemmermann, E., Algen I (Schizophyceen, Flagellaten, Peridineen), in Kryptogamenflora der Mark Brandenburg und angrenzender Gebiete herausgegeben von dem Botanishcen Verein der Provinz Brandenburg, Dritter Band, Leipzig: Verlag von Grebrüder Borntraeger, 1910, p. 497.

  27. Mazei, Yu.A. and Tikhonenkov, D.V., Heterotrophic flagellates in the littoral and sublittoral zones of the southeast part of the Pechora Sea, Oceanology, 2006, vol. 46, no. 3, p. 368. https://doi.org/10.1134/S0001437006030088

    Article  Google Scholar 

  28. Mazei, Yu.A., Tikhonenkov, D.V., and Mylnikov, A.P., The species structure of the community and the abundance of heterotrophic flagellates in small fresh water bodies, Zool. Zh., 2005, vol. 84, no. 9, p. 1027.

    Google Scholar 

  29. Mignot, J.-P., Structure et ultrastructure de quelques Euglenomonadines, Protistologica, 1966, vol. 2, p. 51.

    Google Scholar 

  30. Mikryukov, K.A., Tsentrokhelidnye solnechniki (Centroheliozoa) (Centrohelid Heliozoans (Centroheliozoa)), Moscow: KMK, 2002.

  31. Moestrup, Ø. and Thomsen, H.A., Preparations of shadow cast whole mounts, in Handbook of Phycological Methods, Cambridge: Cambridge Univ. Press, 1980, p. 385.

    Google Scholar 

  32. Mylnikov, A.P. and Kosolapova, N.G., Fauna of heterotrophic flagellates of a small bogged lake, Biol. Vnutr. Vod, 2004, no. 4, p. 18.

  33. Mylnikov, A.P. and Zhgarev, N.A., Flagellates of the littoral zone of the Barents Sea and freshwater bodies, Biol Vnutr. Vod: Inform. Byul., 1984, no. 63, p. 54.

  34. Pascher, A., Zur Klärung einiger gefärbter und farbloser Flagellaten und ihrer Einrichtungen zur Aufnahme animalischer Nahrung, Arch. Protistenkd., 1942, vol. 96, p. 75.

    Google Scholar 

  35. Pascher, A. and Lemmermann, E., Die Süsswasser-Flora Deutschlands, Österreichs und der Scheiz. Heft 2: Flagellatae II. Chrysomonadinae, Cryptomonadinae, Eugleninae, Chloromonadinae und gefãrbte flagellaten unsicherer stellung, Jena: Verlag von G. Fischer, 1913, p. 1.

    Google Scholar 

  36. Playfair, G.I., Australian freshwater flagellates, Proc. Linn. Soc. New South Wales, 1921, vol. XLVI, no. 181, p. 99.

    Article  Google Scholar 

  37. Plotnikov, A.O., Selivanova, E.A., and Nemtseva, N.V., Species composition of heterotrophic flagellates of saline Salt-Iletsk lakes, Izv. Penz. Gos. Pedagog. Univ. im. V.G. Belinskogo, 2011, no. 25, p. 548.

  38. Prokin, A.A., Sazhnev, A.S., and Philippov, D.A., Water beetles (Insecta: Coleoptera) of some peatlands of the North Caucasus, Nat. Conserv. Res., 2019, vol. 4, no. 2, p. 57. https://doi.org/10.24189/ncr.2019.016

    Article  Google Scholar 

  39. Prokina, K.I. and Mylnikov, A.P., Heterotrophic flagellates of freshwater and marine habitats of Southern Patagonia and Tierra del Fuego (Chile), Zool. Zh., 2018, vol. 97, no. 12, p. 1439. https://doi.org/10.1134/S0044513418120097

    Article  Google Scholar 

  40. Prokina, K.I. and Philippov, D.A., Materials on free-living heterotrophic flagellates of marshes of North and South Ossetia, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2017, no. 79 (82), p. 177. https://doi.org/10.24411/0320-3557-2017-10038

  41. Prokina, K.I. and Philippov, D.A., Heterotrophic flagellates in the primary lakes and hollow-pools of mires in the European North of Russia, Protistology, 2018, vol. 12, no. 2, p. 81.

    Google Scholar 

  42. Prokina, K.I., Mylnikov, A.P., Galanina, O.V., and Philippov, D.A., First report on heterotrophic flagellates in the mires of Arkhangelsk region, Russia, Biol. Bull. (Moscow), 2017, vol. 44, no. 9, p. 1067. https://doi.org/10.1134/S1062359017090096

    Article  Google Scholar 

  43. Prokina, K.I., Turbanov, I.S., Tikhonenkov, D.V., and Mylnikov, A.P., Free-living heterotrophic flagellates from bays of Sevastopol (the Black Sea littoral), Protistology, 2018, vol. 12, no. 4, p. 202. https://doi.org/10.21685/1680-0826-2018-12-4-5

    Article  Google Scholar 

  44. Romanov, R.E., Records of rare species of heterotrophic algae in rivers and lakes in the south of Western Siberia (upper Ob River basin, Russia), Turczaninowia, 2005, vol. 8, no. 3, p. 48.

  45. De Saedeleer, H.D., Notes de Protistologie. I. Craspédomonadines: Matériel systématique, Ann. Soc. R. Zool. Belg., 1927, vol. 58, p. 117.

  46. Schiwitza, S., Lisson, H., Arndt, H., and Nitsche, F., Morphological and molecular investigation on freshwater choanoflagellates (Craspedida, Salpingoecidae) from the River Rhine at Cologne (Germany), Eur. J. Protistol., 2020, art. 125687. https://doi.org/10.1016/j.ejop.2020.125687

  47. Schroeckh, S., Lee, W.J., and Patterson, D.J., Free-living heterotrophic euglenids from freshwater sites in mainland Australia, Hydrobiologia, 2003, vol. 493, p. 131. https://doi.org/10.1023/A:1025457801420

    Article  Google Scholar 

  48. Scoble, J.M. and Cavalier-Smith, T., Scale evolution in Paraphysomonadida (Chrysophyceae): sequence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species, Eur. J. Protistol., 2014, vol. 50, no. 2, p. 551. https://doi.org/10.1016/j.ejop.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shmakova, L.A., Karpov, S.A., Malavin, S.A., and Smirnov, A.V., Morphology, biology and phylogeny of Phalansterium arcticum sp. n. (Amoebozoa, Variosea), isolated from ancient arctic permafrost, Eur. J. Protistol., 2018, vol. 63, p. 117. https://doi.org/10.1016/j.ejop.2018.02.002

    Article  PubMed  Google Scholar 

  50. Silva, H., Fifteen new algae, Bull. Torrey Bot. Club, 1953, vol. 80, no. 4, p. 342. https://doi.org/10.2307/2481770

    Article  Google Scholar 

  51. Skuja, H.L., Beitrag zur Algenflora Lettlands. II, Acta Horti Bot. Univ. Latv., 1939, vols. XI/XII, nos. 1/3, p. 41.

    Google Scholar 

  52. Skuja, H.L., Taxonomie des phytoplanktons einiger seen in Uppland, Schweden, Symb. Bot. Ups., 1948, vol. 9, pp. 1–399.

    Google Scholar 

  53. Skuja, H.L., Grundzüge der Algenfl ora und Algenvegetation der Fjeldgegenden um Abisko in Schwedisch-Lappland, Nova Acta Regiae Soc. Sci. Upsal., Ser., 1964, vol. 18, p. 1.

    Google Scholar 

  54. Smirnov, A.V., Chao, E., Nassonova, E.S., and Cavalier-Smith, T., A revised classification of naked lobose amoebae (Amoebozoa: Lobosa), Protist, 2011, vol. 4, no. 162, p. 545. https://doi.org/10.1016/j.protis.2011.04.004

    Article  Google Scholar 

  55. Smith, H.G., The terrestrial protozoan fauna of South Georgia, Polar Biol., 1982, vol. 1, p. 173. https://doi.org/10.1007/BF00287004

    Article  Google Scholar 

  56. Smith, P.J. and Hobson, L.A., Temporal variations in the taxonomic composition of flagellated nanoplankton in a Temperate Fjord, J. Phycol., 1994, vol. 30, no. 3, p. 369. https://doi.org/10.1111/j.0022-3646.1994.00369.x

    Article  Google Scholar 

  57. Stein, F., Der Organismus der Flagellaten nach eigenen fokschungen in systematischer reihenfolge bearbeitet. Hälfte I, Leipzig: Wilhelm Englemann, 1878.

    Google Scholar 

  58. Stokes, A.C., Some new infusoria from American fresh water, Ann. Mag. Nat. Hist. Ser. 5, 1985, no.90, p. 437. https://doi.org/10.1080/00222938509459365

  59. Stokes, A.C., Notices of new fresh-water Infusoria, Proc. Am. Philos. Soc., 1887, vol. 24, no. 126, p. 244. https://doi.org/10.1111/j.1365-2818.1887.tb01561.x

    Article  Google Scholar 

  60. Stout, J.D., The role of protozoa in nutrient cycling and energy flow, in Advances in Microbial Ecology, Alexander, M., Ed., Boston, MA: Springer, 1980, vol. 4, p. 1. https://doi.org/10.1007/978-1-4615-8291-5_1

  61. Tarnogradskii, D.A., On the study of water bodies of North-East Ossetia, Tr. Sev.-Osetinsk. S.-Kh. Inst., vol. I (14), Rab. Sev.-Kavk. Gidrobiol. Stn. Sev.-Osetinsk. S.-Kh. Inst., 1947, vol. V, no. 1, p. 3.

    Google Scholar 

  62. Tarnogradskii, D.A., Microflora and microfauna of peat mires of the Caucasus. 6. Devdorak peat mire, Tr. Sev.-Osetinsk. S.-Kh. Inst., vol. 18, Rab. Sev.-Kavk. Gidrobiol. Stn., 1957, vol. VI, nos. 1–2, p. 3.

    Google Scholar 

  63. Tarnogradskii, D.A., Microflora and microfauna of peat mires of the Caucasus. 8. Sedge–peatmoss lakes in the upper reaches of the Balkarskii Cherek River, Tr. Sev.-Osetinsk. S.-Kh. Inst., vol. 20, Rab. Sev.-Kavk. Gidrobiol. Stn., 1959, vol. VI, no. 3, p. 3.

    Google Scholar 

  64. Tikhonenkov, D.V., Species diversity of heterotrophic flagellates in Rdeisky Reserve weetlands, Protistology, 2007/2008, vol. 5, nos. 2/3, p. 213.

    Google Scholar 

  65. Tikhonenkov, D.V., Biodiversity and quantitative abundance of heterotrophic flagellates (Protista) of bogged lakes of the Polisto-Lovatskaya mire system, Tr. Gos. Prir. Zapov. Rdeiskii, 2009, no. 1, p. 68.

  66. Tikhonenkov, D.V. and Mazei, Y.A., Heterotrophic flagellate biodiversity and community structure in freshwater streams, Inland Water Biol., 2008, vol. 1, no. 2, p. 129. https://doi.org/10.1134/S1995082908020041

    Article  Google Scholar 

  67. Tikhonenkov, D.V. and Mazei, Yu.A., Heterotrophic flagellates in the bogged landscapes of the southern taiga: the role of space and time in the formation of species diversity, Zool. Zh., 2009a¸ vol. 88, no. 11, p. 1.

  68. Tikhonenkov, D.V. and Mazei, Yu.A., Spatial structure of the community of heterotrophic flagellates in a peatmoss mire, Zh. Obshch. Biol., 2009b, vol. 70, no. 1, p. 78.

    CAS  PubMed  Google Scholar 

  69. Tikhonenkov, D.V., Mazei, Yu.A., and Mylnikov, A.P., Species diversity of heterotrophic flagellates in White Sea littoral sites, Eur. J. Protistol., 2006, vol. 42, no. 3, p. 191. https://doi.org/10.1016/j.ejop.2006.05.001

    Article  PubMed  Google Scholar 

  70. Tikhonenkov, D.V., Mazei, Yu.A., and Embulaeva, E.A., The species composition and structure of the heterotrophic flagellates in forest-steppe soils of the Middle Volga River basin, Eurasian Soil Sci., 2011, vol. 44, no. 2, p. 194. https://doi.org/10.1134/S1064229311020153

    Article  Google Scholar 

  71. Tikhonenkov, D.V., Mylnikov, A.P., Gong, Y.C., Feng, W.S., and Mazei, Yu., Heterotrophic flagellates from freshwater and soil habitats in subtropical China (Wuhan Area, Hubei Province), Acta Protozool., 2012, vol. 51, p. 63.

    Google Scholar 

  72. Vetrova, Z.I., Bestsvetnye evglenovye vodorosli Ukrainy (Colorless Euglenophyta of Ukraine), Kiev: Naukova dumka, 1980.

  73. Vørs, N., Heterotrophic amoebae, flagellates ans heliozoan from the Tvärminne area, Gulf of Finland, in 1988–1990, Ophelia, 1992, vol. 36, no. 1, p. 1. https://doi.org/10.1080/00785326.1992.10429930

    Article  Google Scholar 

  74. Vørs, N., Buck, K.R., Chavez, F.P., et al., Nanoplankton of the equatorial pacific with emphasis on the heterotrophic protists, Deep-Sea Res., Part II, 1995, vol. 42, nos. 2–3, p. 585. https://doi.org/10.1016/0967-0645(95)00018-L

    Article  Google Scholar 

  75. Wołowski, K., New and rare species of the colourless Euglenophyta in Poland, Fragm. Florist. Geobot., 1991, vol. 36, no. 1, p. 105.

    Google Scholar 

  76. Zhukov, B.F., Keys to colorless free-living flagellates of the suborder Bodonina Hollande, Tr. Inst. Biol. Vnutr. Vod Akad. Nauk SSSR, 1971¸ no. 21 (24), p. 241.

  77. Zhukov, B.F., Atlas presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Taxonomy)), Rybinsk: Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 1993.

  78. Zhukov, B.F., Mylnikov, A.P., and Moiseev, E.V., New and rare species of zooflagellates in the Volga River basin, Tr. Inst. Biol. Vnutr. Vod SSSR, 1978, no. 40.

Download references

ACKNOWLEDGMENTS

Authors thank A.A. Prokin, A.S. Sazhnev (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences), A.A. Przhiboro (Zoological Institute, Russian Academy of Sciences), E.S. Chertoprud (Moscow State University), A.G. Sabeev, and V.V. Dobronosov (Alaniya National Park) for assistance in field work. Special thanks go to M.A. Boychuk (Karelian Research Center of the Russian Academy of Sciences) for invaluable help in identifying mosses and D.V. Tikhonenkov (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences) for a discussion of the manuscript and valuable advice.

Funding

This work was carried out as part of State Task no. 121051100102-2; the fieldwork was supported by the Russian Foundation for Basic Research, grant no. 18-04-00988; and processing of the material, light and electron microscopy, and preparing the manuscript were funded by the Russian Foundation for Basic Research, grant no. 20-04-00583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Prokina.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokina, K.I., Philippov, D.A. Heterotrophic Flagellates from Mires of the North Caucasus, Russia. Inland Water Biol 14, 500–516 (2021). https://doi.org/10.1134/S1995082921050138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082921050138

Keywords:

Navigation