Skip to main content
Log in

Pico- and Nanoplankton in Aquatic Ecosystems in the Valley of the Lakes and Great Lakes Depression (Mongolia)

  • Aquatic Microbiology
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

The abundance and biomass of bacterioplankton, phototrophic picoplankton, and heterotrophic nanoflagellates has been determined in lakes, rivers, and reservoirs located in the Valley of the Lakes and Great Lakes Depression (Mongolia). The species richness of the heterotrophic flagellates and their consumption of bacteria are estimated. Pico- and nanoplankton are the most abundant in shallow mineral lakes Orog and Tatsyn and in the freshwater Durgun Reservoir. Heterotrophic nanoflagellates consume 26–92% (on average 66%) of the daily bacterioplankton production. Thus, flagellates are important in the transfer of bacterial carbon to the higher levels of planktonic trophic webs. A total of 30 species and their forms of heterotrophic flagellates from 14 large taxa are identified. The highest species diversity of these protists are found in the Durgun and Taishyr reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhukov, B.F., Atlas Presnovodnykh geterotrofnykh zhgutikonostsev (biologiya, ekologiya, sistematika) (Atlas of Freshwater Heterotrophic Flagellates (Biology, Ecology, and Systematics)), Rybinsk: Dom Pechati, 1993.

    Google Scholar 

  2. Zhukov, B.F., Heterotrophic flagellates, in Ekologicheskie problemy Verkhnei Volgi (Environmental Problems of the Upper Volga), Yaroslavl: Yarosl. Gos. Tekh. Univ., 2001, pp. 117–120.

    Google Scholar 

  3. Kopylov, A.I., Enkhtuyaa, A., Kosolapov, D.B., and Myl’nikov, A.P., Microbiological characteristics of rivers and lakes in the Selenga River basin, in Vodnye ekosistemy basseina Selengi: Trudy Sovmestnoi Rossiisko-Mongol’skoi Kompleksnoi Biologicheskoi Ekspeditsii Rossiiskoi Akademii Nauk and Akademii Nauk Mongolii (Aquatic Ecosystems of the Selenga River Basin: Trans. Joint Russ.–Mong. Compl. Biol. Expedition Russ. Acad. Sci. and Mong. Acad. Sci.), Moscow, 2009, vol. 55, pp. 137–165.

    Google Scholar 

  4. Krylov, A.V., Quantitative development of zooplankton in waterbodies and watercourses of the Great Lakes Depression (Mongolia), Inland Water Biol., 2013, vol. 6, no. 1, pp. 32–38. doi 10.1134/S1995082912040098

    Article  Google Scholar 

  5. Krylov, A.V. and Chugunov, V.L., Characteristic features of zooplankton of lakes Orog and Tatsyn-Tsagaan (Western Mongolia) at the beginning of the period of stabilization of their level regime, in Materialy Mezhdunarodnoi konferentsii “Ekosistemy Tsentral’noi Azii v sovremennykh usloviyakh sotsial’no-ekonomicheskogo razvitiya” (Proc. Int. Conf. “Ecosystems of Central Asia under Modern Conditions of Social and Economic Development”), Ulaanbaatar, 2015, vol. 2, pp. 57–60.

    Google Scholar 

  6. Arditi, R., Ginzburg, L.R., and Akcakaya, H.R., Variation in plankton densities among lakes: a case for ratiodependent models, Am. Nat., 1991, vol. 138, pp. 1287–1296.

    Article  Google Scholar 

  7. Auer, B. and Arndt, H., Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season, Freshwater Biol., 2001, vol. 46, pp. 959–972.

    Article  Google Scholar 

  8. Azam, F., Fenchel, T., Field, J.G., et al., The ecological role of water-column microbes in the sea, Mar. Ecol.: Proc. Ser., 1983, vol. 10, pp. 257–263.

    Article  Google Scholar 

  9. Billen, G., Servais, P., and Becquevort, S., Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up and top-down control?, Hydrobiologia, 1990, vol. 207, pp. 37–42.

    Article  Google Scholar 

  10. Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microbiol., 1983, vol. 46, no. 34, pp. 491–498.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Guillou, L., Jacquet, S., Chrétiennot-Dinet, M.-J., and Vaulot, D., Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus, Aquat. Microb. Ecol., 2001, vol. 26, pp. 201–207.

    Article  Google Scholar 

  12. Gurung, T.B., Nakanishi, M., and Urabe, J., Seasonal and vertical difference in negative and positive effects of grazers on heterotrophic bacteria in Lake Biwa, Limnol., Oceanogr., 2000, vol. 45, no. 8, pp. 1689–1696.

    Article  Google Scholar 

  13. Jurgens, K., Pernthaler, J., Schalla, S., and Amann, R., Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing, Appl. Environ. Microbiol., 1999, vol. 65, no. 3, pp. 1241–1250.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Maclsaac, E.A. and Stockner, J.G., Enumeration of phototrophic picoplankton by autofluorescence microscopy, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis, 1993, pp. 187–197.

    Google Scholar 

  15. Langenheder, S. and Jurgens, K., Regulation of bacterial biomass and community structure by metazoan and protozoan predation, Limnol., Oceanogr, 2001, vol. 46, pp. 121–134.

    Article  Google Scholar 

  16. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Boca Raton, FL: Lewis, 1993, pp. 303–308.

    Google Scholar 

  17. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol., Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  18. Sanders, R.W., Trophic strategies among heterotrophic flagellates, in The Biology of Free-Living Heterotrophic Flagellates, Syst. Assoc. Spec. Vol. Ser., Oxford: Clarendon Press, 1991, vol. 45, pp. 21–38.

    Google Scholar 

  19. Sherr, E.B. and Sherr, B.F., High rates of consumption of bacteria by pelagic ciliates, Nature, 1987, vol. 325, pp. 710–711.

    Article  Google Scholar 

  20. Simek, K., Macek, M., Seda, J., and Vyhnalek, V., Possible food chain relationships between bacterioplankton, protozoans, and cladocerans in a reservoir, Int. Rev. Gesamt. Hydrobiol., 1990, vol. 75, pp. 583–596.

    Article  Google Scholar 

  21. Sommaruga, R. and Psenner, R., Trophic interactions within the microbial food web in Piburger See (Austria), Arch. Hydrobiol., 1995, vol. 132, no. 3, pp. 257–278.

    Google Scholar 

  22. Tremaine, S.C. and Mills, A.L., Tests of the critical assumptions of the dilution method for estimating bacterivory by microeucaryotes, Appl. Environ. Microbiol., 1987, vol. 53, no. 12, pp. 2914–2921.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Vanderploeg, H.A., Zooplankton particle selection and feeding mechanisms, in The Biology of Particles in Aquatic Systems, Boca Raton, FL: Lewis, 1994, pp. 205–234.

    Google Scholar 

  24. Vaque, D. and Pace, L.M., Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food-web structure, J. Plankton Res., 1992, vol. 14, pp. 307–321.

    Article  Google Scholar 

  25. Vors, N., Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne Area, Gulf of Finland, in 1988–1990, Ophelia, 1992, vol. 36, no. 1, pp. 1–109.

    Article  Google Scholar 

  26. Weinbauer, M.G., Ecology of prokaryotic viruses, FEMS Microbiol. Ecol., 2004, vol. 28, pp. 127–181.

    Article  CAS  Google Scholar 

  27. Wieltschnig, C., Wihlidal, P., Ulbricht, T., et al., Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment, Aquat. Microb. Ecol., 1999, vol. 17, pp. 77–89.

    Article  Google Scholar 

  28. Zollner, E., Hoppe, H.-G., Sommer, U., and Jurgens, K., Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates), Limnol., Oceanogr., 2009, vol. 54, no. 1, pp. 262–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Kosolapov.

Additional information

Original Russian Text © D.B. Kosolapov, N.G. Kosolapova, 2018, published in Biologiya Vnutrennykh Vod, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosolapov, D.B., Kosolapova, N.G. Pico- and Nanoplankton in Aquatic Ecosystems in the Valley of the Lakes and Great Lakes Depression (Mongolia). Inland Water Biol 11, 269–277 (2018). https://doi.org/10.1134/S1995082918030094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082918030094

Keywords

Navigation