Skip to main content
Log in

Analytical Solution of Brinkman Hydrodynamics in Filtration Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of Brinkman hydrodynamics is considered. A variational generalized Sedov model is constructed to simulate the problem of filtration of a viscous and, in the general case, compressible fluid in a porous medium, taking into account the adhesion interactions between the fluid and the porous structure, considered as a solid deformable body. It is proposed to use a variant of the model of surface interactions, characterized by a reversible component in the dynamic process and a dissipative component, for the introduction of which the corresponding dissipation channel is formulated in the Sedov variational principle. An analytical solution of the problem of the flow of an incompressible fluid around a solitary inclusion of a spherical or cylindrical shape is constructed under the condition of a polynomial behavior of the velocity at infinity. As an application, the problem of determining the effective properties of filtration in a flow around a periodic system of spheres or cylinders is considered. To solve this problem, it is proposed to use the Trefftz approximation scheme developed earlier for the problems of the gradient theory of elasticity. As an approximating basis, it is proposed to use an analytically constructed system of solutions for the flow of an incompressible fluid with polynomial behavior at infinity around a solitary inclusion. A constructive method is proposed for constructing this system of functions in a closed finite form using the generalized Papkovich–Neiber representation and a system of canonical potentials constructed using radial multipliers (functions that depend only on the radius) based on harmonic polynomials. In this case, the Gauss theorem on the representation of an arbitrary homogeneous polynomial in the form of an expansion in terms of a system of homogeneous harmonic polynomials is used. It is shown that due to the analytical construction of the used functions, the generalized Trefftz scheme can be effectively applied in the cell problem when we determine the effective permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. T. Kaya and J. Goldak, ‘‘Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe,’’ Int. J. Heat Mass Transfer 49, 3211–3220 (2006).

    Article  MATH  Google Scholar 

  2. R. Sonar, S. Hardman, J. Pell, A. Leger, and M. Faks, ‘‘Transient thermal and hydrodynamic model of flat heat pipe for the cooling of electronics components,’’ Int. J. Heat Mass Transfer 51, 6006–6017 (2008).

    Article  Google Scholar 

  3. F. Lefevre and M. Lallemand, ‘‘Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components,’’ Int. J. Heat Mass Transfer 49, 1375–1383 (2006).

    Article  MATH  Google Scholar 

  4. V. V. Pukhnachev, ‘‘Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des for Viscous Flows in Domains with a Multiply Connected Boundary,’’ in New Directions in Mathematical Fluid Mechanics (Birkhäuser, Basel, 2010), pp. 333–348.

    Google Scholar 

  5. V. Pukhnachev, ‘‘Symmetries in the Navier–Stokes equations,’’ Usp. Mekh. 8, 3–76 (2006).

    Google Scholar 

  6. H. Darcy, Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau: ouvrage termin par un appendice relatif aux fournitures d’eau de plusieurs villes au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tole et de bitumen (V. Dalmont, Paris, 1856).

    Google Scholar 

  7. B. R. Babin, G. P. Peterson, and D. Wu, ‘‘Steady-state modeling and testing of micro heat pipe,’’ J. Heat Transfer 112, 595–601 (1990).

    Article  Google Scholar 

  8. D. A. Stewart and P. M. Norris, ‘‘Size effects on the thermal conductivity of thin metallic wires: Microscale implications,’’ Microscale Thermophys. Eng. 4, 89–101 (2000).

    Article  Google Scholar 

  9. A. M. Zenkour, ‘‘Nonlocal thermoelasticity theory for thermal-shock nanobeams with temperature-dependent thermal conductivity,’’ Therm. Stresses 38, 1049–1067 (2015).

    Article  Google Scholar 

  10. S. Forest, J.-M. Cardona, and R. Sievert, ‘‘Thermoelasticity of second-grade media,’’ in Continuum Thermomechanics, the Art and Science of Modelling Material Behaviour, Paul Germain Anniversary Volume, Ed. by G. A. Maugin, R. Drouot, and F. Sidoroff (Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  11. S. Forest and E. C. Aifantis, ‘‘Some links between recent gradient thermo–elasto–plasticity theories and the thermomechanics of generalized continua,’’ Solids Struct. 47, 3367–3376 (2010).

    Article  MATH  Google Scholar 

  12. S. A. Lurie, D. B. Volkov-Bogorodskii, and P. A. Belov, ‘‘Analytical solution of stationary coupled thermoelasticity problem for inhomogeneous structures,’’ Mathematics 10 (90) (2022). https://doi.org/10.3390/math10010090

  13. S. A. Lurie, P. A. Belov, and D. B. Volkov-Bogorodskii, ‘‘Variational models of coupled gradient thermoelasticity and thermal conductivity,’’ Mater. Phys. Mech. 42, 564–581 (2019). doi 10.1063/1.4754513

    Article  Google Scholar 

  14. P. L. Kapica, ‘‘The study of heat transfer in helium II,’’ Phys. USSR 4 (181) (1941).

  15. P. A. Belov and S. A. Lurie, ‘‘On variation models of the irreversible processes in mechanics of solids and generalized hydrodynamics,’’ Lobachevskii J. Math. 40, 896–910 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Lanczos, The Variational Principles of Mechanics (Univ. of Toronto, Toronto, 1962).

    MATH  Google Scholar 

  17. L. I. Sedov, ‘‘Mathematical methods of constructing new models of continuous media,’’ Usp. Mat. Nauk 20 (5), 121–180 (1965).

    MathSciNet  MATH  Google Scholar 

  18. S. A. Lurie and P. A. Belov, ‘‘Variational formulation of coupled hydrodynamic problems,’’ J. Appl. Mech. Tech. Phys. 62, 828–884 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer Academic, Dordrecht, 1989).

    Book  MATH  Google Scholar 

  20. B. E. Pobedria, Mechanics of Composite Materials (Moscow State Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  21. A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  22. J. D. Eshelby, ‘‘The determination of the elastic field of an ellipsoidal inclusion and related problems,’’ Proc. R. Soc. London, Ser. A 241, 376–396 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  24. D. B. Volkov-Bogorodskiy and E. I. Moiseev, ‘‘Generalized Trefftz method in the gradient elasticity theory,’’ Lobachevskii J. Math. 42, 1944–1953 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. G. Mikhlin, Variational Methods in Mathematical Physics (Macmillan, New York, 1964).

    MATH  Google Scholar 

  26. H. C. Brinkman, ‘‘On the permeability of media consisting of closely packed porous particles,’’ Appl. Sci. Res. A 1, 81–86 (1947).

    Article  Google Scholar 

  27. G. S. Beavers and D. D. Joseph, ‘‘Boundary conditions at a naturally permeable wall,’’ J. Fluid Mech. 30, 197–207 (1967).

    Article  Google Scholar 

  28. P. Ya. Polubarinova-Kochina, Theory of Ground Water Movement (Princeton Univ. Press, Princeton, 1962).

    MATH  Google Scholar 

  29. P. F. Papkovich, ‘‘Solution générale des équations différentielles fondamentales de l’élasticité, exprimeé par trois fonctiones harmoniques,’’ C. R. Acad. Sci. (Paris) 195, 513–515 (1932).

    Google Scholar 

  30. H. Neuber, ‘‘Ein neuer ansatz zur lösung raümlicher probleme der elastizitätstheorie,’’ Zeitschr. Angew. Mat. Mech. 14, 203–212 (1934).

    Article  MATH  Google Scholar 

  31. A. I. Borisenko and I. E. Tarapov, Vector Analysis and the Beginning of Tensor Analysis (Moscow, 1966) [in Russian].

    Google Scholar 

  32. B. A. Ditkin and A. P. Prudnikov, Integral Transformations and Operational Analysis (GIFML, Moscow, 1961) [in Russian].

    Google Scholar 

  33. S. L. Sobolev, Introduction to the Theory of Cubature Formulas (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  34. S. Lurie, D. Volkov-Bogorodskiy, E. Moiseev, and A. Kholomeeva, ‘‘Radial multipliers in solutions of the Helmholtz equations,’’ Integral Transf. Spec. Funct. 30, 254–263 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 1.

    MATH  Google Scholar 

  36. D. B. Volkov-Bogorodskii and A. N. Vlasov, ‘‘Asymptotic averaging of the Brinkman filtration equations in multiphase media with a periodic structure,’’ Mekh. Kompoz. Mater. Konstrukts. 18 (1), 92–110 (2012).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under the grant 20-41-04404 issued to the Institute of Applied Mechanics of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Lurie, D. B. Volkov-Bogorodskiy or P. A. Belov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lurie, S.A., Volkov-Bogorodskiy, D.B. & Belov, P.A. Analytical Solution of Brinkman Hydrodynamics in Filtration Problems. Lobachevskii J Math 43, 1894–1907 (2022). https://doi.org/10.1134/S1995080222100237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100237

Keywords:

Navigation