Skip to main content
Log in

On the Inertia Effects on the Darcy Law: Numerical Implementation and Confrontation of Micromechanics-Based Approaches

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonlinear deviation of the Darcy law in the domain of high pressure gradient. Classically, the (linear) Darcy law can be deduced from asymptotic homogenization approaches and the numerical resolution of the Stokes flow problem on the unit cell of the porous medium. At high-speed steady flow of a fluid, nonlinear effects on the macroscopic filtration law arise and are accounted by considering the convection term in the Navier–Stokes equation. These nonlinear effects has been often studied in asymptotic homogenization framework by expanding the solution in power series at low Reynolds number. This has two advantages: (i) The Navier–Stokes problems are replaced by a chain of linear problems with source terms which depend on the solution at lower order, and (ii) the macroscopic nonlinear filtration law is derived in the form of a polynom. We develop a Fast Fourier Transform (FFT)-based numerical algorithm to compute the solution of this elementary problems and to compute the higher-order permeability tensors in connection with the morphology of the porous medium. The results are then compared to the solution of the full Navier–Stokes problem by means of finite element method (FEM) which allows evaluating the capacity of the expansion method to account for the nonlinear effects. We determine the convergence radius of the polynomial series, and we give the limit of the series expansion method in terms of the Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler, P.M., Malevich, A.E., Mityushev, V.V.: Nonlinear correction to Darcy’s law for channels with wavy walls. Acta Mech. 224(8), 1823–1848 (2013)

    Article  Google Scholar 

  • Ahmad, N.: Physical properties of porous medium affecting laminar and turbulent flow of water. Ph.D. Thesis, Colorado State University, Fort Collins (1967)

  • Allaire, G.: Homogenization of the stokes flow in connected porous medium. Asymptot. Anal. 3, 203–222 (1989)

    Google Scholar 

  • Auriault, J.L., Sanchez-Palencia, E.: Study of macroscopic behavior of a deformable porous medium. J. Mécanique. 16(4), 575–603 (1977)

    Google Scholar 

  • Bahloff, M., Mikelic, A., Wheeler, M.F.: Polynomial filtration law for low Reynolds number flows through porous media. Transp. Porous Media 81, 36–60 (2010)

    Google Scholar 

  • Bang, H.L., Monchiet, V., Grande, D.: Computation of permeability with Fast Fourier Transform from 3-D digital images of porous microstructures. Int. J. Num. Methods Heat Fluid Flow (2016) (Accepted)

  • Barrère, J.: Modélisation des écoulements de Stokes et Navier–Stokes en milieu poreux. Doctoral thesis at Université de Bordeaux I (1990)

  • Chen, Z., Lyons, S.L., Qin, G.: Derivation of the Forchheimer law via homogenization. Transp. Porous Media 44, 325–335 (2001)

    Article  Google Scholar 

  • Chauveteau, G., Thirriot, C.: Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La Houille Blanche 2, 141–148 (1967)

    Article  Google Scholar 

  • Darcy, H.: Les Fontaines Publiques de la Ville de Dijon, Victor Dalmond (1856)

  • Domb, V., Sykes, M.F.: Use of series expansions for the ising model susceptibility and excluded volume problem. J. Math. Phys. 7, 2–63 (1961)

    Google Scholar 

  • Edwards, D.A., Shapiro, M., Bar-Yoseph, P., Shapira, M.: The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids A 2, 45–55 (1990)

    Article  Google Scholar 

  • Firdaouss, M., Guermond, J.L., Le Quéré, P.: Nonlinear corrections to DarcyŠs law at low Reynolds numbers. J. Fluid Mech. 343, 331–350 (1997)

    Article  Google Scholar 

  • Forchheimer, P.: Wasserbewegung durch Boden. VDIZ 45, 1782–1788 (1901)

    Google Scholar 

  • Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions. Transp. Porous Media 29, 191–206 (1997)

    Article  Google Scholar 

  • Kim, B.Y.K.: The resistance to flow in simple and complex porous media whose matrices are composed of spheres. M.Sc. thesis, University of Hawaii at Manoa (1985)

  • Lasseux, D., Abbasian Arani, A.A., Ahmadi, A.: On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media. Phys. Fluids 23, 073103 (2011)

  • Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21(1), 11–23 (1983)

    Article  Google Scholar 

  • Lindquist, E.: On the flow of water through porous soils. In: Premier Congrès des Grands Barrages, Stockholm 5, pp. 81–101 (1933)

  • Mei, C.C., Auriault, J.-L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  Google Scholar 

  • MacDonald, I.F., El-Sayed, M.S., Mow, K., Dullien, F.A.L.: Flow through porous media: the Ergun equation revisited. Ind. Chem. Fundam. 18, 199–208 (1979)

    Article  Google Scholar 

  • Michel, J.C., Moulinec, H., Suquet, P.: A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int. J. Numer. Methods Eng. 52, 139–160 (2001)

    Article  Google Scholar 

  • Monchiet, V., Bonnet, G., Lauriat, G.: A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium. C. R. Méc. 337(4), 192–197 (2009)

    Article  Google Scholar 

  • Monchiet, V., Bonnet, G.: Numerical homogenization of non linear composites with a polarization-based FFT iterative scheme. Comput. Mater. Sci. 79, 276–283 (2013)

    Article  Google Scholar 

  • Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)

    Article  Google Scholar 

  • Nguyen, T.-K., Monchiet, V., Bonnet, G.: A Fourier based numerical method for computing the dynamic permeability of porous media. Eur. J. Mech. B Fluids 37, 90–98 (2013)

    Article  Google Scholar 

  • Peszynska, M., Trykozko, A., Augustson, K.: Computational upscaling of inertia effects from porescale to mesoscale. In: Computational Science–ICCS 2009. vol. 5544, pp. 695–704 (2009)

  • Rasoloarijaona, M., Auriault, J.-L.: Non-linear seepage flow through a rigid porous medium. Eur. J. Mech. B Fluids 13(2), 177–195 (1994)

    Google Scholar 

  • Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

  • Skjetne, E., Thovert, J.-F., Adler, P.M.: High-velocity flow in spatially periodic porous. In: Ing (ed.) Norwegian University of Science and Technology, pp. 9–82 (1995)

  • Skjetne, E., Auriault, J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. B Fluids 18(1), 131–145 (1999)

    Article  Google Scholar 

  • Sunada, D.K.: Laminar and turbulent flow of water through homogeneous porous media. Ph.D. dissertation, University of California at Berkeley (1965)

  • Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1(1), 3–25 (1986)

    Article  Google Scholar 

  • Wodie, J.-C., Levy, T.: Correction non lineaire de la Loi de Darcy. C. R. Acad. Sci. Paris Serie II 312, 157–161 (1991)

    Google Scholar 

  • Zermatten, E., Schneebeli, M., Arakawa, H., Steinfeld, A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Reg. Sci. Technol. 97, 33–40 (2014)

    Article  Google Scholar 

  • Zheng, Q.-S.: Two-dimensional tensor function representation for all kinds of material symmetry. Proc. R. Soc. Lond. 443(1917), 127–138 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Monchiet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, VT., To, QD. & Monchiet, V. On the Inertia Effects on the Darcy Law: Numerical Implementation and Confrontation of Micromechanics-Based Approaches. Transp Porous Med 111, 171–191 (2016). https://doi.org/10.1007/s11242-015-0588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0588-4

Keywords

Navigation