Skip to main content
Log in

Small Non-Sphericity of a Convergent Shock Wave in a Collapsing Cavitation Bubble in Tetradecane

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to studying the growth of small deformations of the radially-convergent shock wave in a collapsing bubble with a radius of 500 \(\mu\)m in tetradecane at its temperature and pressure of 663.15 K and 70 bar. The initial bubble non-sphericity is taken in the form of single spherical harmonics with even numbers in the range 2–8. The vapor and liquid flow is governed by gas dynamic equations with allowing for the heat conduction in both fluids, the heat and mass exchange at the interface, with applying wide-range equations of state of vapor and liquid. It is shown that before transformation of the shock wave into a strong one, the variation of the amplitude of its small non-sphericity quite strongly depends on the number of the harmonic determining the small initial non-sphericity of the bubble. After this transformation, the amplitude of small non-sphericity of the shock wave until it remains small is increased with decreasing the shock wave radius according to the power law with an exponent of about \(-\)1.14. The only exception is a small interval in which the non-sphericity of the shock wave abruptly grows due to its interaction with a compression wave catching up with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. J. Flannigan and K. S. Suslick, ‘‘Inertially confined plasma in an imploding bubble,’’ Nat. Phys. 6, 598–601 (2010).

    Article  Google Scholar 

  2. C. C. Wu and P. H. Roberts, ‘‘Structure and stability of a spherical shock wave in a Van der Waalse gas,’’ Quart. J. Mech. Appl. Math. 49, 501–543 (1996).

    Article  MathSciNet  Google Scholar 

  3. W. C. Moss, D. B. Clarke, et al., ‘‘Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,’’ Phys. Fluids 6, 2979 (1994).

    Article  Google Scholar 

  4. R. P. Taleyarkhan et al. ‘‘Evidence for nuclear emissions during acoustic cavitation,’’ Science (Washington, DC, U. S.) 295 (5561), 1868–1873 (2002).

    Article  Google Scholar 

  5. R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, et al., ‘‘The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion,’’ Phys. Fluids17 (10), 1–31 (2005).

    Article  Google Scholar 

  6. A. K. Evans, ‘‘Instability of converging shock waves and sonoluminescence,’’ Phys. Rev. E 54, 5004–5011 (1996).

    Article  Google Scholar 

  7. C. J. Davie and R. G. Evans, ‘‘Symmetry of spherically converging shock waves through reflection,’’ Phys. Rev. Lett. 110, 185002 (2013).

  8. Z. Somogyi and P. H. Roberts, ‘‘Stability of an imploding spherical shock wave in a van der Waals gas II,’’ Quart. J. Mech. Appl. Math. 60, 289–309 (2007).

    Article  MathSciNet  Google Scholar 

  9. A. A. Aganin and T. F. Khalitova, ‘‘Deformation of shock wave under strong compression of nonspherical bubbles,’’ High Temp. 53, 877–881 (2015).

    Article  Google Scholar 

  10. T. F. Khalitova, ‘‘Deformation of shock waves inside a bubble subjected to strong compression,’’ Vestn. Lobachevskii Univ. 4, 2561–2563 (2011).

    Google Scholar 

  11. R. I. Nigmatulin, A. A. Aganin, et al., ‘‘Formation of convergent shock waves in a bubble upon its collapse,’’ Dokl. Phys. 59, 431–435 (2014).

    Article  Google Scholar 

  12. R. I. Nigmatulin, A. A. Aganin, and D. Yu. Toporkov, ‘‘Possibility of cavitation bubble supercompression in tetradecane,’’ Dokl. Phys. 63, 348–352 (2018).

    Article  Google Scholar 

  13. D. Yu. Toporkov, ‘‘Collapse of weakly-nonspherical cavitation bubble in acetone and tetradecane,’’ Multiphase Syst. 13 (3), 23–28 (2018).

    Article  Google Scholar 

  14. A. A. Aganin, T. F. Khalitova, and N. A. Khismatullina, ‘‘Numerical simulation of radially converging shock waves in the cavity of a bubble,’’ Math. Models Comput. Simul. 6, 560–572 (2014).

    Article  MathSciNet  Google Scholar 

  15. R. I. Nigmatulin and R. Kh. Bolotnova, ‘‘Simplified wide-range equations of state for benzene and tetradecane,’’ High Temp. 55, 199–208 (2017).

    Article  Google Scholar 

  16. A. A. Aganin and T. F. Khalitova, ‘‘Numerical simulation of convergence of nonspherical shock waves in a cavitation bubble,’’ Lobachevskii J. Math. 40 (6), 705–710 (2019).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Aganin or T. F. Khalitova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganin, A.A., Khalitova, T.F. Small Non-Sphericity of a Convergent Shock Wave in a Collapsing Cavitation Bubble in Tetradecane. Lobachevskii J Math 41, 1137–1142 (2020). https://doi.org/10.1134/S1995080220070057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220070057

Keywords:

Navigation