Skip to main content
Log in

On the Concept of A-Statistical Uniform Integrability and the Law of Large Numbers

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the concept of A-statistical uniform integrability of sequences of random variables which is not only more general than the concept of uniform integrability, but is also weaker than the concept of uniform integrability. We also give some characterizations of A-statistical uniform integrability and prove a law of large numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Chandra, “Uniform integrability in the Cesàro sense and the weak law of large numbers,” Sankhyā Ser. A 51, 309–317 (1989).

    MathSciNet  MATH  Google Scholar 

  2. M. Ordóñez Cabrera, “Convergence in mean of weighted sums of {an,k}-compactly uniformly integrable random elements in Banach spaces,” Int. J. Math. Math. Sci. 20, 443–450 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Ordóñez Cabrera and A. Volodin, “Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability,” J. Math. Anal. Appl. 305, 644–658 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. T. C. Hu, M. Ordóñez Cabrera, and A. Volodin, “Convergence of randomly weighted sums of Banach space valued random elements and uniform integrability concerning the random weights,” Statist. Probab. Lett. 51(2), 155–164 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Giuliano Antonini, T. C. Hu, Y. Kozachenko, and A. Volodin, “An application of φ-subgaussian technique to Fourier analysis,” J. Math. Anal. Appl. 408, 114–124 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. D. Gadjiev and C. Orhan, “Some approximation theorems via statistical convergence,” Rocky Mountain J. Math. 32, 129–138 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Söylemez and M. Ünver, “Korovkin type theorems for Cheney—Sharma operators via summability methods,” Results Math. 72, 1601–1612 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. N. L. Braha, “Some properties of new modified Szász-Mirakyan operators in polynomial weight spaces via power summability methods,” Bull. Math. Anal. Appl. 10(3), 53–65 (2018).

    MathSciNet  MATH  Google Scholar 

  9. M. Ünver, “Abel transforms of positive linear operators,” AIP Conf. Proc. 1558, 1148–1151 (2013).

    Article  Google Scholar 

  10. Ö. G. Atlihan, M. Ünver, and O. Duman, “Korovkin theorems on weighted spaces: revisited,” Period. Math. Hungar. 75, 201–209 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Tas and T. Yurdakadim, “Approximation by positive linear operators in modular spaces by power series method,” Positivity 21, 1293–1306 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Balser and M. Miyake, “Analysis-summability of formal solutions of certain partial differential equations,” Acta Sci. Math. 65, 543–552 (1999).

    MathSciNet  MATH  Google Scholar 

  13. W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations (Springer, New York, 2000).

    MATH  Google Scholar 

  14. A. Zygmund, Trigonometric Series, 2nd ed. (Cambridge University Press, Cambridge, 1959), Vol. 1.

    MATH  Google Scholar 

  15. H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique,” Colloq. Math. 2(1), 73–74 (1951).

    MathSciNet  Google Scholar 

  16. H. Fast, “Sur la convergence statistique,” Colloq. Math., No. 2, 241–244 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  17. I. J. Schoenberg, “The integrability of certain functions and related summability methods,” Am. Math. Mon. 66, 361–775 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Šalát, “On statistically convergent sequences of real numbers,” Math. Slov. 30, 139–150 (1980).

    MathSciNet  MATH  Google Scholar 

  19. H. I. Miller, “A measure theoretical subsequence characterization of statistical convergence,” Trans. Am. Math. Soc. 347, 1811–1819 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Šalát V. and V. Toma, “A classical Olivier’s theorem and statistical convergence,” Ann. Math. Blaise Pascal 10, 305–313 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Yurdakadim, M. K. Khan, H. I. Miller, and C. Orhan, “Generalized limits and statistical convergence,” Mediterr. J. Math. 13, 1135–1149 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Kadets, A. Leonov, and C. Orhan, “Weak statistical convergence and weak filter convergence for unbounded sequences,” J. Math. Anal. Appl. 371, 414–424 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Máčaj and T. Šalát, “Statistical convergence of subsequences of a given sequence,” Math. Bohem. 126, 191–208 (2001).

    MathSciNet  MATH  Google Scholar 

  24. A. Faisant, G. Grekos, and V. Toma, “On the statistical variation of sequences,” J. Math. Anal. Appl. 306, 432–439 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Connor, “On strong matrix summability with respect to a modulus and statistical convergence,” Canad. Math. Bull. 32, 194–198 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. A. Fridy and H. I. Miller, “A matrix characterization of statistical convergence,” Analysis 11, 59–66 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. K. Khan and C. Orhan, “Matrix characterization of A-statistical convergence,” J. Math. Anal. Appl. 335, 406–417 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Kostyrko, W. Wilczyński, and T. Šalát, “I-convergence,” Real Anal. Exchange 26, 669–686 (2000).

    MathSciNet  MATH  Google Scholar 

  29. O. Duman, “A Korovkin type approximation theorems via \({\mathcal I}\)-convergence,” Czechosl. Math. J. 57, 367–375 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Baláž, J. Gogola and T. Visnyai, “I (q)c -convergence of arithmetical functions,” J. Number Theory 183, 74–83 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  31. R. C. Buck, “The measure theoretic approach to density,” Am. J. Math. 68, 560–580 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. C. Buck, “Generalized asymptotic density,” Am. J. Math. 75, 335–346 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  33. J. A. Fridy, “On statistical convergence,” Analysis 5, 301–313 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Kolk, “Matrix summability of statistically convergent sequences,” Analysis 13, 77–83 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. R. Freedman and J. J. Sember, “Densities and summability,” Pacif. J. Math. 95, 293–305 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Cakalli and M. K. Khan, “Summability in topological spaces,” Appl. Math. Lett. 24, 348–352 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. A. Fridy, “Statistical limit points,” Proc. Am. Math. Soc. 118, 1187–1192 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Kostyrko, M. Máčaj, T. Šalát, and O. Strauch, “On statistical limit points,” Proc. Am. Math. Soc. 129, 2647–2654 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Kostyrko, M. Máčaj, T. Šalát, and M. Sleziak, “I-convergence and extremal I-limit points,” Math. Slov. 55, 443–464 (2005).

    MathSciNet  MATH  Google Scholar 

  40. S. Pehlivan and M. A. Mamedov, “Statistical cluster points and turnpike,” Optimization 48, 91–106 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Fridy and C. Orhan, “Statistical limit superior and limit inferior,” Proc. Am. Math. Soc. 125, 3625–3631 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Demirci, “A-statistical core of a sequence,” Demonstr. Math. 33, 343–354 (2000).

    MathSciNet  MATH  Google Scholar 

  43. M. Kucukaslan and M. Altınok, “A-statistical supremum-infimum and A-statistical convergence,” Azerb. J. Math. 4, 2221–9501 (2014).

    MathSciNet  MATH  Google Scholar 

  44. J. Boos, Classical and Modern Methods in Summability (Oxford Univ. Press, Oxford, 2000).

    MATH  Google Scholar 

  45. K. L. Chung, A Course in Probability Theory, 3rd ed. (Academic, San Diego, CA, 2001).

    Google Scholar 

  46. P. A. Meyer, Probability and Potentials (Blaisdell, Waltham, MA, 1966).

    MATH  Google Scholar 

  47. S. Ghosal, “Statistical convergence of a sequence of random variables and limit theorems,” Appl. Math. 58, 423–437 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Ghosal, “Weighted statistical convergence of order α and its applications,” J. Egypt. Math. Soc. 24, 60–67 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of M. Ünver was done while he was visiting University of Regina, Canada and the research has been supported by The Scientific and Technological Research Council of Turkey (TÜBITAK) Grant 1059B191800534. A part of research of A. Volodin has been done during the visit to the University of Pisa in December 2016. The authors would like to express their appreciation to the INDAM for supporting this visit.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Giuliano Antonini, M. Ünver or A. Volodin.

Additional information

Submitted by A.M. Elizarov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuliano Antonini, R., Ünver, M. & Volodin, A. On the Concept of A-Statistical Uniform Integrability and the Law of Large Numbers. Lobachevskii J Math 40, 2034–2042 (2019). https://doi.org/10.1134/S1995080219120035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219120035

Keywords and phrases

Navigation