Skip to main content
Log in

A Korovkin type approximation theorems via \(\mathcal{I}\)-convergence

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Using the concept of \(\mathcal{I}\)-convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bojanic, F. Cheng: Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejer polynomials. Proceedings of the Conference of Canadian Math. Soc. 3 (1983), 5–17.

    MathSciNet  Google Scholar 

  2. R. Bojanic, M. K. Khan: Summability of Hermite-Fejer interpolation for functions of bounded variation. J. Nat. Sci. Math. 32 (1992), 5–10.

    MATH  Google Scholar 

  3. I. Chlodovsky: Sur la representation des fonctions discontinuous par les polynômes de M. S. Bernstein. Fund. Math. 13 (1929), 62–72.

    Google Scholar 

  4. J. S. Connor: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194–198.

    MATH  MathSciNet  Google Scholar 

  5. O. Duman, C. Orhan: Statistical approximation by positive linear operators. Stud. Math. 161 (2004), 187–197.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. Duman, M. K. Khan, C. Orhan: A-statistical convergence of approximating operators. Math. Inequal. Appl. 4 (2003), 689–699.

    MathSciNet  Google Scholar 

  7. H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244.

    MATH  MathSciNet  Google Scholar 

  8. A. R. Freedman, J. J. Sember: Densities and summability. Pacific J. Math. 95 (1981), 293–305.

    MATH  MathSciNet  Google Scholar 

  9. J. A. Fridy: On statistical convergence. Analysis 5 (1985), 301–313.

    MATH  MathSciNet  Google Scholar 

  10. J. A. Fridy, H. I. Miller: A matrix characterization of statistical convergence. Analysis 11 (1991), 59–66.

    MATH  MathSciNet  Google Scholar 

  11. G. H. Hardy: Divergent Series. Oxford Univ. Press, London, 1949.

    MATH  Google Scholar 

  12. M. K. Khan, B. Della Vecchia, A. Fassih: On the monotonicity of positive linear operators. J. Approximation Theory 92 (1998), 22–37.

    Article  MATH  Google Scholar 

  13. E. Kolk: Matrix summability of statistically convergent sequences. Analysis 13 (1993), 77–83.

    MATH  MathSciNet  Google Scholar 

  14. P. P. Korovkin: Linear Operators and Theory of Approximation. Hindustan Publ. Comp., Delhi, 1960.

    Google Scholar 

  15. P. Kostyrko, T. Šalát, W. Wilczyński: \(\mathcal{I}\)-convergence. Real Anal. Exchange 26 (2000/01), 669–685.

    MathSciNet  Google Scholar 

  16. C. Kuratowski: Topologie I. PWN, Warszawa, 1958.

    MATH  Google Scholar 

  17. H. I. Miller: A measure theoretical subsequence characterization of statistical convergence. Trans. Amer. Math. Soc. 347 (1995), 1811–1819.

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Niven, H. S. Zuckerman, H. Montgomery: An Introduction to the Theory of Numbers. 5th Edition. Wiley, New York, 1991.

    Google Scholar 

  19. H. L. Royden: Real Analysis. 2nd edition. Macmillan Publ., New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duman, O. A Korovkin type approximation theorems via \(\mathcal{I}\)-convergence. Czech Math J 57, 367–375 (2007). https://doi.org/10.1007/s10587-007-0065-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-007-0065-5

Keywords

Navigation