Skip to main content
Log in

Preparation and Study of Hemostatic Materials Based on Chitosan and Chitin Nanofibrils

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The natural polymer chitin and its derivative chitosan are among the most promising polymers to create hemostatic materials. Composite fibers with different ratios of chitin nanofibrils were obtained by wet spinning. Study of the mechanical characteristics of composite fibers has shown that the introduction of a small amount of chitin nanofibrils, approximately 0.5 wt %, is accompanied by the strengthening of the fibers, while the use of high concentrations leads to an increase in the resistance of the fibers to the impacts of a wet environment. A nonwoven fabric obtained from the composite fibers has shown efficacy comparable to the commercial hemostatic agents Surgicel and Tachocomb. The assessment of the interaction of the developed materials in the body was carried out in in vivo experiments. It has been shown that chitosan fibers have a bioinert character. The formation of a dense connective tissue capsule around the implanted fiber was observed on the 91st day, which indicates a low rate of its resorption in the subfascia. A histological study of the interaction of the developed materials with the tissues of a living organism showed the presence of numerous giant multinucleated cells in the area of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. G. Ersoy, M. F. Kaynak, O. Yilmaz, et al., Adv. Ther. 24, 485 (2007).

    Article  CAS  Google Scholar 

  2. S. Samudrala, AORN J. 88 (3), S2 (2008).

    Article  Google Scholar 

  3. D. M. Jensen and G. A. Machicado, Tech. Gastrointest. Endosc. 7, 124 (2005).

    Article  Google Scholar 

  4. A. Kichler and S. Jang, Clin. Endosc. 52, 401 (2019).

    Article  Google Scholar 

  5. N. Howe and B. Cherpelis, J. Am. Acad. Dermatol. 69, 659e1 (2013).

  6. K. A. Ghassemi and D. M. Jensen, Expert Rev. Gastroenterol. Hepatol. 10, 615 (2016).

    Article  CAS  Google Scholar 

  7. F. Alizadeh, A. Fakoor, and S. Haghdani, J. Pediatr. Urol. 12, 160 (2016).

    Article  Google Scholar 

  8. C.-C. Lo, P.-I. Hsu, G.-H. Lo, et al., Gastrointest. Endosc. 63, 767 (2006).

    Article  Google Scholar 

  9. V. A. Paterno, A. Bisin, and A. Addis, Preprint (BMS Surgery, 2020).

  10. D. Johnson, S. Bates, S. Nukalo, et al., Ann. Med. Surg. 3 (2), 21 (2014).

    Article  Google Scholar 

  11. X. Sun, Z. Tang, M. Pan, et al., Carbohydr. Polym. 177, 135 (2017).

    Article  CAS  Google Scholar 

  12. H. E. Achneck, B. Sileshi, R. M. Jamiolkowski, et al., Ann. Surg. 251, 217 (2010).

    Article  Google Scholar 

  13. D. Ren, H. Yi, W. Wang, and X. Ma, Carbohydr. Res. 340, 2403 (2005).

    Article  CAS  Google Scholar 

  14. F. -J. L. Murat, M. H. Ereth, Y. Dong, et al., J. Urol. 172, 1119 (2004).

    Article  CAS  Google Scholar 

  15. H. E. Achneck, B. Sileshi, R. M. Jamiolkowski, et al., Ann. Surg. 251, 217 (2010).

    Article  Google Scholar 

  16. S. M. Baird, B. M. Teh, K. K. M. Lim, and M. C. Campbell, Laryngoscope 128, 369 (2018).

    Article  Google Scholar 

  17. P. O. Larson, J. Dermatol. Surg. Oncol. 14, 623 (1988).

    Article  CAS  Google Scholar 

  18. K. M. Lewis, H. Atlee, A. Mannone, et al., J. Surg. Res. 193, 825 (2015).

    Article  CAS  Google Scholar 

  19. S. Lee, A. M. Pham, S. G. Pryor, et al., Arch. Facial Plast. Surg. 11, 29 (2009).

    Article  CAS  Google Scholar 

  20. Z. Vadasz and E. Toubi, Semin. Thromb. Hemostasis 44, 669 (2018).

    Article  CAS  Google Scholar 

  21. M. N. V. Ravi Kumar, React. Funct. Polym. 46, 1 (2000).

    Article  Google Scholar 

  22. Y. Qin, J. Appl. Polym. Sci. 107, 993 (2008).

    Article  CAS  Google Scholar 

  23. H. Ueno, T. Mori, and T. Fujinaga, Adv. Drug Deliv. Rev. 52, 105 (2001).

    Article  CAS  Google Scholar 

  24. N. Boucard, C. Viton, D. Agay, et al., Biomaterials 28, 3478 (2007).

    Article  CAS  Google Scholar 

  25. V. Dodane and V. D. Vilivalam, Pharm. Sci. Technol. Today 1, 246 (1998).

    Article  CAS  Google Scholar 

  26. I.-Y. Kim, S.-J. Seo, H.-S. Moon, et al., Biotechnol. Adv. 26, 1 (2008).

    Article  CAS  Google Scholar 

  27. G. C. East and Y. Qin, J. Appl. Polym. Sci. 50, 1773 (1993).

    Article  CAS  Google Scholar 

  28. Z. Hu, D.-Y. Zhang, S.-T. Lu, et al., Marine Drugs 16, 273 (2018).

    Article  Google Scholar 

  29. B. G. Kozen, S. J. Kircher, J. Henao, et al., Acad. Emerg. Med. 15, 74 (2008).

    Article  Google Scholar 

  30. V. Zubillaga, A. M. Salaberria, T. Palomares, et al., Biomacromolecules 19, 3000 (2018).

    Article  CAS  Google Scholar 

  31. F. G. Torres, O. P. Troncoso, A. Pisani, et al., Int. J. Mol. Sci. 20, 5092 (2019).

    Article  CAS  Google Scholar 

  32. V. E. Yudin, I. P. Dobrovolskaya, I. M. Neelov, et al., Carbohydr. Polym. 108, 176 (2014).

    Article  CAS  Google Scholar 

  33. E. Dresvyanina, A. Yudenko, N. Yevlampieva, et al., Vlakna Textil 25 (2), 27 (2018).

    CAS  Google Scholar 

  34. N. V. Smirnova, K. A. Kolbe, E. N. Dresvyanina, et al., Materials 12, 1874 (2019).

    Article  CAS  Google Scholar 

  35. T. V. Smotrina, E. N. Dresvyanina, S. F. Grebennikov, et al., Polymer 189, 122 (2020).

    Article  Google Scholar 

  36. E. N. Dresvyanina, S. F. Grebennikov, I. P. Dobrovol’skaya, T. P. Maslennikova, E. M. Ivan’kova, and V. E. Yudin, Polymer Sci., Ser. A 62, 205 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Pierfrancesco Morganti for providing chitin nanofibrils for the study.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-17011 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Maevskaia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maevskaia, E.N., Dresvyanina, E.N., Shabunin, A.S. et al. Preparation and Study of Hemostatic Materials Based on Chitosan and Chitin Nanofibrils. Nanotechnol Russia 15, 466–475 (2020). https://doi.org/10.1134/S1995078020040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020040072

Navigation