Skip to main content
Log in

APPLICATION OF NANOCLUSTER IRON–MOLYBDENE POLYOXOMETALATES FOR CORRECTION OF EXPERIMENTAL POSTHEMORRHAGIC ANEMIA

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The widespread occurrence of anemia and the presence of side-effects of existing iron-containing drugs require the search for new drugs. In an experiment on male rats of the Wistar strain, posthemorrhagic anemia is simulated by collecting blood from the tail vein in an amount of 1.5% of body weight. Intramuscular administration of iron–molybdenum polyoxometallates in an amount of 1.5 mg/kg to rats with anemia results in a faster restoration of the content of red blood cells and hemoglobin, the hematocrit value in the blood, the concentration of iron in the blood plasma, and the content of erythrocyte precursors in the bone marrow, which recover one to seven days earlier than the parameters measured in a control group of untreated animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Vorobiev, Anemic Syndrome in Clinical Practice (Newdiamed, Moscow, 2001), p. 16 [in Russian].

    Google Scholar 

  2. B. de Benoist, E. McLean, I. Egli, and M. Cogswell, Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia (World Health Organization, Genewa, 2008).

  3. S. R. Pasricha and H. Drakesmith, “Iron deficiency anemia: problems in diagnosis and prevention at the population level,” Hematol. Oncol. Clin. North Am. 30, 309 (2016).

    Article  Google Scholar 

  4. V. Kumar, H. Haridas, P. Hunsigi, et al., “Evaluation of dental and bone age in iron-deficient anemic children of South India,” J. Int. Soc. Prev. Commun. Dent. 6, 430 (2016).

    Article  Google Scholar 

  5. I. R. Demuth, A. Martin, and A. Weissenborn, “Iron supplementation during pregnancy—a cross-sectional study undertaken in four german states,” BMC Pregnancy Childbirth 18, 491 (2018).

    Article  CAS  Google Scholar 

  6. M. Levi, M. Rosselli, M. Simonetti, et al., “Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care,” Eur. J. Haematol. 97, 583 (2016).

    Article  CAS  Google Scholar 

  7. Anemia in Children: Diagnosis, Differential Diagnosis, Treatment, Ed. A. G. Rumyantsev and Yu. N. Tokarev, 2nd ed. (MAX Press, Moscow, 2004) [in Russian].

    Google Scholar 

  8. V. A. Rodionov and M. S. Agandeyeva, “The prevalence of anemia in children of the city of Cheboksary,” Vestn. Chuvash. Univ., No. 3, 491 (2013).

  9. M. Nairz, I. Theurl, D. Wolf, and G. Weiss, “Iron deficiency or anemia of inflammation?: differential diagnosis and mechanisms of anemia of inflammation,” Wien. Med. Wochenschr. 166 (13–14), 411 (2016).

    Article  Google Scholar 

  10. Hematology Manual, Ed. by A. I. Vorob’ev (Newdiamed, Moscow, 2005), Vol. 3 [in Russian].

    Google Scholar 

  11. M. Hertl, Padiatrische Differentialdiagnose (Georg Thieme, Stuttgart, New York, 1986), Vol. 2.

    Google Scholar 

  12. G. Weiss, T. Ganz, and L. T. Goodnough, “Anemia of inflammation,” Blood 133, 40 (2019).

    Article  CAS  Google Scholar 

  13. A. C. Ross, “Impact of chronic and acute inflammation on extra- and intracellular iron homeostasis,” Am. J. Clin. Nutr. 106, 1581 (2017).

    Article  Google Scholar 

  14. J. Wang and K. Pantopoulos, “Regulation of cellular iron metabolism,” Biochem. J. 434, 365 (2011).

    Article  CAS  Google Scholar 

  15. A. G. Rumyantsev, I. N. Zakharova, and V. M. Chernov, “Prevalence of iron deficiency,” Med. Sovet, No. 6, 62 (2015).

    Google Scholar 

  16. I. S. Tarasova, “Iron deficiency anemia in children and adolescents,” Vopr. Sovrem. Periatr. 10 (2), 40 (2011).

    Google Scholar 

  17. K. P. Flores, S. E. Blohowiak, J. J. Winzerling, et al., “The impact of erythropoietin and iron status on brain myelination in the newborn rat,” J. Neuros. Res. 96, 1586 (2018).

    Article  CAS  Google Scholar 

  18. T. W. Bastian, W. C. von Hohenberg, D. J. Mickelson, et al., “Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity,” Dev. Neurosci. 38, 264 (2016).

    Article  CAS  Google Scholar 

  19. S. E. Juul, R. J. Derman, and M. Auerbach, “Perinatal iron deficiency: implications for mothers and infants,” Neonatology 115, 269 (2019).

    Article  CAS  Google Scholar 

  20. L. M. Winchester, J. Powell, S. Lovestone, and A. J. Nevado-Holgado, “Red blood cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s disease,” Genome Med. 10, 51 (2018).

    Article  Google Scholar 

  21. C. S. Lam, W. Doehner, and J. Comin-Colet, “Iron deficiency in chronic heart failure: case-based practical guidance,” ESC Heart Fail 5, 764 (2018).

    Article  Google Scholar 

  22. G. Tourniaire, C. Milesi, J. Baleine, et al., “Anemia, a new severity factor in young infants with acute viral bronchiolitis?,” Arch Pediatr. 25, 189 (2018).

    Article  CAS  Google Scholar 

  23. P. Nielsen, R. Kongi, and R. Fischer, “Efficacy of an iron retard preparation in patients with iron deficiency anemia,” MMW Fortschr. Med. 158 (6), 17 (2016).

    Article  Google Scholar 

  24. V. N. Chernov and I. S. Tarasova, “What drug should be chosen for the treatment of iron deficiency anemia in children—salt or hydroxide-based polymaltose iron complex?,” Pediatriya 91 (5), 90 (2012).

    Google Scholar 

  25. P. Geisser, “The pharmacology and safety profile of ferric carboxymaltose (Ferinject(R)): structure/reactivity relationships of iron preparations,” Port. J. Nephrol. Hypert. 23 (1), 11 (2009).

    Google Scholar 

  26. S. V. Moiseev, “Iron carboxymaltozat (Ferinzhekt)—a new intravenous drug for the treatment of iron deficiency anemia,” Klin. Farmakol. Ter. 21 (2), 2 (2012).

    Google Scholar 

  27. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., “Influence of iron-molybdenum nanocluster polyoxometalates on the apoptosis of blood leukocytes and the level of heat-shock proteins in the cells of thymus and spleen in rats,” Nanotechnol. Russ. 11, 653 (2016).

    Article  CAS  Google Scholar 

  28. A. Müller, E. Krickemeyer, H. Bögge, et al., “Organizational forms of matter: an inorganic superfullerene and keplerate based on molybdenum oxide,” Angew. Chem. Int. Ed. 37, 3360 (1998).

    Google Scholar 

  29. A. Müller, S. Sarkar, S. Q. Nazir Shah, et al., “Archimedian synthesis and magic numbers: ‘sizing’ giant molybdenum—oxide based molecular spheres of the keplerate type,” Angew. Chem., Int. Ed. Engl. 38, 3238 (1999).

    Article  Google Scholar 

  30. A. A. Ostrousko, M. O. Tonkushina, V. Yu. Korotaev, et al., “Stability of the Mo72Fe30 polyoxometalate buckyball in solution,” Russ. J. Inorg. Chem. 57, 1210 (2012).

    Article  Google Scholar 

  31. A. A. Ostroushko and M. O. Tonkushina, “Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions,” Russ. J. Phys. Chem. A 89, 443 (2015).

    Article  CAS  Google Scholar 

  32. A. A. Ostroushko, I. F. Gette, I. G. Danilova, et al., “Studies on the possibility of introducing iron-molybdenum buckyballs into an organism by electrophoresis,” Nanotechnol. Russ. 9, 586 (2014).

    Article  Google Scholar 

  33. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., “Study of acute and subacute action of iron-molybdenum nanocluster polyoxometallates,” Nanotechnol. Russ. 8, 672 (2013).

    Article  Google Scholar 

  34. A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., “Safety assessment of iron-molybdenum nanocluster polyoxometalates intended for targeted drug delivery,” Vestn. Ural. Med. Akad. Nauki 34 (2), 107 (2011).

    Google Scholar 

  35. A. A. Ostroushko, I. G. Danilova, I. F. Gette, et al., “Study of safety of molybdenum and iron-molybdenum nanocluster polyoxometalates intended for targeter delivery of drugs,” J. Biomater. Nanobiotechnol., No. 2, 557 (2011).

    Article  CAS  Google Scholar 

  36. I. F. Gette, I. G. Danilova, and A. A. Ostroushko, “The content of histone proteins in blood lymphocytes and the manifestation of the inflammatory process,” Ross. Immunol. Zh. 1, 444 (2015).

    Google Scholar 

  37. I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., “Changing the content of histone proteins and heat-shock proteins in the blood and liver of rats after the single and repeated administration of nanocluster iron-molybdenum polyoxometallates,” Nanotechnol. Russ. 10, 820 (2015).

    Article  CAS  Google Scholar 

  38. B. G. Yushkov, V. G. Klimin, and M. V. Severin, The Blood System and Extreme Effects on the Body (Ural. Otdel. RAS, Yekaterinburg, 1999) [in Russian].

    Google Scholar 

Download references

Funding

This study was conducted while implementing the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project nos. 4.6653.2017/8.9 and AAAA-A18-118020590107-0). The data are protected by patent no. 267 1077 of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Danilova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroushko, A.A., Gette, I.F., Brilliant, S.A. et al. APPLICATION OF NANOCLUSTER IRON–MOLYBDENE POLYOXOMETALATES FOR CORRECTION OF EXPERIMENTAL POSTHEMORRHAGIC ANEMIA. Nanotechnol Russia 14, 159–164 (2019). https://doi.org/10.1134/S1995078019020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020101

Navigation