Skip to main content
Log in

Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Core/shell Si/SiO x nanoparticles (Si/SiO x -NP) having bright red-infrared photoluminescence were obtained by a three-stage synthesis based on the thermal disproportionation of microdispersed SiO. Transformation patterns of structure and spectroscopic properties of the material during passage through all process stages (starting from initial SiO microparticles and up to the Si/SiO x -NP sols) have been revealed by using Raman, photoluminescence and ESR spectroscopy, XPS, XRD, and electron microscopy. Thermal annealing of SiO microparticles (stage I) results in formation of amorphous-crystalline Si nanophase in the matrix of SiO2, as well as generation of paramagnetic Pb centres with the concentration up to 4 × 1018 particles/g. At the annealing temperature, T an > 900 °C, a rapid growth of nanocrystal sizes takes place, and, simultaneously, a rapid growth of paramagnetic Pb centre concentration occurs. Elimination of SiO2 from the annealed sample by etching in HF (stage II) stimulates further crystallization of amorphous-crystalline core, caused by stress relaxation inside the Si core when removing SiO2 matrix. Functionalization of nanoparticle surface (stage III) allows obtaining core/shell Si/SiO x -NP with a bright red-infrared photoluminescence and their sols. Average size of the crystalline Si core increases from 4.7 to 11.1 nm when T an at the stage I rises from 350 to 1100 °C. At relatively low T an = 350 °C, the nanoparticles with monocrystalline Si cores are mainly formed, while at T an > 1100 °C, a large number of polycrystalline Si nanoparticles are also observed. Our TEM images have revealed the existence of monocrystalline Si nanoparticles having significantly different contrast even at comparable nanoparticle sizes. We attribute that to the formation of both bulk (with a high TEM contrast) and flat (2D) Si nanocrystals (with a low TEM contrast) in the course of SiO annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar V (2008) Nanosilicon 1st edn. Elsevier, Amsterdam, 368 P. ISBN: 9780080445281

  2. Ischenko AA, Fetisov GV, Aslanov LA (2014) Nanosilicon: properties, synthesis, applications, methods of analysis and control, CRC&CISP, Cambridge, 713 P. ISBN: 9781466594227

  3. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048. doi:10.1063/1.103561

    Article  Google Scholar 

  4. Gusev OB, Poddubny AN, Prokofiev AA, Yassievich IN (2013) Light emission from silicon nanocrystals. Semiconductors 47:183–202. doi:10.1134/S1063782613020103

    Article  Google Scholar 

  5. Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B, Paillard V (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B 62:15942–15952. doi:10.1103/PhysRevB.62.15942

    Article  Google Scholar 

  6. Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement. Appl Phys Lett 80:4834. doi:10.1063/1.1485302

    Article  Google Scholar 

  7. Delerue C, Allan G, Reynaud C, Guillois O, Ledoux G, Huisken F (2006) Multiexponential photoluminescence decay in indirect-gap semiconductor nanocrystals. Phys Rev B 73:235318. doi:10.1103/PhysRevB.73.235318

    Article  Google Scholar 

  8. Bagratashvili VN, Dorofeev SG, Ischenko AA, Kononov NN, Panchenko VYa, Rybaltovskii AO, Sviridov AP, Senkov SN, Tsypina SI, Yusupov VI, Yuvchenko SA, Zimnyakov DA (2013) Effects of laser-induced quenching and restoration of photoluminescence in hybrid Si/SiOx nanoparticles. Laser Phys Lett 10:095901. doi:10.1088/1612-2011/10/9/095901

    Article  Google Scholar 

  9. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4450–4454. doi:10.1002/anie.200501256

    Article  Google Scholar 

  10. Moralez-Sanchez A, Barreto J, Dominguez C, Aceves-Mijares M, Peralvarez M, Carrido B, Luna-Lopez JA (2010) DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films. Nanotechnology 21:085710. doi:10.1088/0957-4484/21/8/085710

    Article  Google Scholar 

  11. Heintz AS, Fink MJ, Mitchell BS (2007) Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv Mater 19:3984–3988. doi:10.1002/adma.200602752

    Article  Google Scholar 

  12. Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659. doi:10.1021/nl050066y

    Article  Google Scholar 

  13. Aihara S, Ishii R, Fukuhara M, Kamata N, Terunuma D, Hirano Y, Saito N, Aramata M, Kashimura S (2001) Electroreductive synthesis and optical characterization of silicon nanoparticles. J Non-Cryst Solids 296:135–138. doi:10.1016/S0022-3093(01)00923-1

    Article  Google Scholar 

  14. Cen ZH, Chen TP, Ding L, Lin Y, Wong JI, Yang M, Liu Z, Goh WP, Zhu FR, Fung S (2009) Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing. J Appl Phys 105:123101. doi:10.1063/1.3148248

    Article  Google Scholar 

  15. Takeoka S, Fujii M, Hayashi S (2000) Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B 62:16820. doi:10.1103/PhysRevB.62.16820

    Article  Google Scholar 

  16. Wei S, Yamamura T, Kajiya D, Saitow K-I (2012) White-light-emitting silicon nanocrystal generated by pulsed laser ablation in supercritical fluid: investigation of spectral components as a function of excitation wavelengths and aging time. J Phys Chem C 116:3928–3934. doi:10.1021/jp210080k

    Article  Google Scholar 

  17. El-Shall MS, Li S (1998) Synthesis and characterization of metal and semiconductor nanoparticles. advances in metal and semiconductor clusters. Ed MA Duncan. Clust Mater 4:115–174

    Article  Google Scholar 

  18. Li S, Germanenko IN, El-Shall MS (1999) Nanoparticles from the vapor phase: synthesis and characterization of Si, Ge, MoO3, and WO3 nanocrystals. J Cluster Sci 10:533–547

    Article  Google Scholar 

  19. Bagratashvili VN, Dorofeev SG, Ischenko AA, Koltashev VV, Kononov NN, Krutikova AA, Rybaltovskii AO, Fetisov GV (2010) Immobilization of luminescent nanosilicon in a microfine polytetrafluoroethylene matrix by means of supercritical carbon dioxide. Russian Journal of Physical Chemistry B 4:1164–1170. doi:10.1134/S1990793110070171

    Article  Google Scholar 

  20. Dorofeev SG, Ischenko AA, Kononov NN, Fetisov GV (2012) Effect of annealing temperature on the optical properties of nanosilicon produced from silicon monoxide. Curr Appl Phys 12:718–725. doi:10.1016/j.cap.2011.10.016

    Article  Google Scholar 

  21. Liu S, Sato S, Kimura K (2005) Synthesis of luminescent silicon nanopowders redispersible to various solvents. Langmuir 21:6324–6329. doi:10.1021/la050346t

    Article  Google Scholar 

  22. Chan TH, Melnik A (1970) Kinetics and mechanism of the sulfoxide–silane reaction. J Am Chem Soc 92:3717–3721

    Google Scholar 

  23. Williamson GK, Smallman RE (1956) Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye–Scherrer spectrum. Phylosophical Magazine 1:34–35

    Article  Google Scholar 

  24. Marchenko VM, Koltashev VV, Lavrishchev SV, Murin DI, Plotnichenko VG (2000) Laser-induced transformation of the microstructure of SiOx, x ≈ 1. Laser Phys 10:576–582

    Google Scholar 

  25. Iacona F, Bongiorno C, Spinella C, Boninelli S, Priolo F (2004) Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. J Appl Phys 95:3723. doi:10.1063/1.166402

    Article  Google Scholar 

  26. Yerci S, Serincan U, Dogan I, Tokay S, Genisel M, Aydinli A, Turan R (2006) Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence. J Appl Phys 100:074301. doi:10.1063/1.2355543

    Article  Google Scholar 

  27. Cerfolini GF, Meda L (1997) Mechanisms and kinetics of room-temperature silicon oxidation. J Non-Cryst Solids 216:140–147. doi:10.1016/S0022-3093(97)00180-4

    Article  Google Scholar 

  28. Szymanski MA, Stoneham AM, Schluger A (2001) The different roles of charged and neutral atomic and molecular oxidising species in silicon oxidation from ab initio calculations. Solid-State Electron 45:1233–1240. doi:10.1016/S0038-1101(00)00263-X

    Article  Google Scholar 

  29. Konstantinova EA, Osminkina LA, Sharov CS, Timoshenko VYu, Kashkarov PK (2005) Influence of NO2 molecule adsorption on free charge carriers and spin centers in porous silicon. Phys Stat Sol A 202:1592–1596. doi:10.1002/pssa.200461193

    Article  Google Scholar 

  30. Carlisle JA, Dongol M, Germanenko IN, Pithawalla YB, El-Shall MS (2000) Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core. Chem Phys Lett 326:335–340

    Article  Google Scholar 

  31. Hessel CM, Wei J, Reid D, Fujii H, Downer MC, Korgel BA (2012) Raman spectroscopy of oxide-embedded and ligand-stabilized silicon nanocrystals. J Phys Chem Lett 3:1089–1093. doi:10.1021/jz300309n

    Article  Google Scholar 

  32. Rybaltovskii AO, Bagratashvili VN, Ischenko AA, Minaev NV, Kononov NN, Dorofeev SG, Krutikova AA, Ol’khov AA (2012) Laser-induced effects in Raman spectra of nanocrystalline silicon. Nanotechnol Russ 7:421–427. doi:10.1134/S1995078012040106

    Article  Google Scholar 

  33. Dorofeev SG, Kononov NN, Ischenko AA, Vasil’ev RB, Goldschtrach MA, Zaitseva KV, Koltashev VV, Plotnichenko VG, Tikhonevich OV (2009) Optical and structural properties of thin films precipitated from the sol of silicon nanoparticles. Semiconductors 43:1420–1427. doi:10.1134/S1063782609110050

    Article  Google Scholar 

  34. Teo BK, Sun XH (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454–1532. doi:10.1021/cr030187n

    Article  Google Scholar 

  35. Aufray B, Kara A, Vizzini S, Oughaddou H, Landri C, Ealet B, Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicone. Appl Phys Lett 96:183102. doi:10.1063/1.3419932

    Article  Google Scholar 

  36. Kara A, Enriquez H, Seitsonen AP, Lew Yan Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene—new candidate for electronics. Surf Sci Rep 67:1–18. doi:10.1016/j.surfrep.2011.10.001

    Article  Google Scholar 

  37. Orekhov AS, Savilov SV, Zakharov VN, Yatsenko AV, Aslanov LA (2013) The isolated flat silicon nanocrystals (2D structures) stabilized with perfluorophenyl ligands. J Nanopart Res 16:2190. doi:10.1007/s11051-013-2190-4

    Article  Google Scholar 

  38. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. doi:10.1021/cr100449n

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge L. I. Krotova from IPLIT RAS for technical assistance. This work was supported by RFBR, Projects No. 12-02-00840, 13-02-12057, 13-02-12407, and Grant of the Government of the Russian Federation for the Support of Scientific Investigations under the Supervision of Leading Scientists: Contract No. 14.B25.31.0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Bagratashvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybaltovskiy, A.O., Ischenko, A.A., Zavorotny, Y.S. et al. Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: structural and spectral characterization. J Mater Sci 50, 2247–2256 (2015). https://doi.org/10.1007/s10853-014-8787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8787-x

Keywords

Navigation