Skip to main content
Log in

Influence of Iron, Zinc, and Copper Nanoparticles on Some Growth Indices of Pepper Plants

  • Nanobiology
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper presents the results of studies on the effect of iron, zinc, and copper nanoparticles (NPs) introduced into a Murashige and Skoog (MS) nutrient medium instead of metal salts on the chlorophyll content in leaves and the length and activity of the roots of the Capsicum annuum pepper plants grown under aseptic conditions. It is shown that the length of the roots of plants grown on a nutrient medium with metal nanoparticles, depending on the dose of NPs and element, is 7‒118% higher than in plants grown on a standard nutrient medium. The activity of the roots of the test plants is 18‒98% higher than the activity of plant roots from the control group. The chlorophyll content in the leaves of pepper grown on a medium with iron and copper nanoparticles is 3‒59% higher than the amount of chlorophyll in plants grown on a standard MS medium. The effective concentrations of iron NPs (3.0, 0.3, and 0.06 mg/L) introduced into the nutrient medium are 1.9, 18.7, and 93.3 times lower, respectively, than the concentration of iron in the ionic form (in terms of metal) contained in standard MS medium; the concentration of zinc NPs (0.4, 0.08, and 0.016 mg/L) is 4.9, 24.5, and 122.5 times less than the concentration of zinc ions in terms of metal in MS; and the concentration of copper NPs (0.004, 0.0008, and 0.00016 mg/L) is 1.6, 8.0, and 40.0 times less than the concentration of copper in terms of copper ions in the standard MS medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Grillo, A. H. Rosa, and L. F. Fraceto, “Engineered nanoparticles and organic matter: a review of the stateof-the-art,” Chemosphere 119, 608–619 (2015).

    Article  Google Scholar 

  2. J. Jampilek and K. Kral’ova, “Application of nanotechnology in agriculture and food industry, its prospects and risks,” Ecol. Chem. Eng. S 22, 321–361 (2015).

    Google Scholar 

  3. C. Parisi, M. Vigani, and E. Rodriguez-Cerezo, “Agricultural nanotechnologies: what are the current possibilities?,” Nano Today 10, 124–127 (2015).

    Article  Google Scholar 

  4. Y. Bhagat, K. Gangadhara, C. Rabinal, G. Chaudhari, and P. Ugale, “Nanotechnology in agriculture: a review,” J. Pure Appl. Microbiol. 9, 737–747 (2015).

    Google Scholar 

  5. N. Dasgupta, S. Ranjan, D. Mundekkad, C. Ramalingam, R. Shanker, and A. Kumar, “Nanotechnology in agro-food: from field to plate,” Food Res. Int. 69, 381–400 (2015).

    Article  Google Scholar 

  6. M. Garcia, T. Forbe, and E. Gonzalez, “Potential applications of nanotechnology in the agro-food sector,” Ciencia Tecnol. Aliment 30, 573–581 (2010).

    Article  Google Scholar 

  7. N. Savage and M. S. Diallo, “Nanomaterials and water purification: opportunities and challenges,” J. Nanopart. Res. 7, 331–342 (2005).

    Article  Google Scholar 

  8. A. Servin, W. Elmer, A. Mukherjee, R. de la Torre-Roche, H. Hamdi, J. C. White, P. Bindraban, and C. Dimkpa, “A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield,” J. Nanopart. Res. 17, 1–21 (2015).

    Article  Google Scholar 

  9. B. Ruttkay-Nedecky, O. Krystofova, L. Nejdl, and A. Vojtech, “Nanoparticles based on essential metals and their phytotoxicity,” J. Nanobiotechnol. 15, 33–35 (2017).

    Article  Google Scholar 

  10. H. Azamal and S. S. Khwaja, “Phytosynthesis of nanoparticles: concept, controversy and application,” Nanoscale Res. Lett. 9, 229–252 (2014).

    Article  Google Scholar 

  11. R. Javed, M. Usman, B. Yucesan, M. Zia, and E. Gurel, “Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni,” Plant Physiol. Biochem. 110, 94–99 (2017).

    Article  Google Scholar 

  12. H. Fazal, B. H. Abbasi, N. Ahmad, and M. Ali, “Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella Vulgaris l,” Appl. Biochem. Biotechnol. 180, 1076–1092 (2016).

    Article  Google Scholar 

  13. O. V. Kopach, A. A. Kuzovkova, S. G. Azizbekyan, and V. N. Reshetnikov, “Use of micronutrient nanoparticles in biotechnology of medicinal plants: exposure of copper nanoparticles to cell cultures Silybum Marianum L,” Tr. BGU 8 (2), 20–23 (2013).

    Google Scholar 

  14. L. Wang, Z. Liu, X. Xia, C. Yang, J. Huang, and S. Wan, “Colorimetric detection of cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes,” J. Virol. Methods 243, 113–119 (2017).

    Article  Google Scholar 

  15. M. Zou, F. Li, J. Zhang, and N. Wang, “Rapid detection of lily symptomless virus with CdTe quantum dots by flow cytometry,” J. Immunoassay. Immunochem. 32, 259–268 (2011).

    Article  Google Scholar 

  16. H. Zarei, R. Kazemi Oskuee, M. Y. Hanafi-Bojd, L. Gholami, L. Ansari, and B. Malaekeh-Nikouei, “Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles,” Pharm. Dev. Technol. 6, 1–6 (2018).

    Article  Google Scholar 

  17. F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin, and I. Willner, “Lighting-up the dynamics of telomerization and DNA replication by CdSe–ZnS quantum dots,” J. Am. Chem. Soc. 125, 13918–13919 (2003).

    Article  Google Scholar 

  18. X. Yan, Y. Song, C. Zhu, H. Li, D. Du, X. Su, and Y. Lin, “MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides,” Anal. Chem. 90, 2618–2624 (2018).

    Article  Google Scholar 

  19. N. N. Glushchenko, O. A. Bogoslovskaya, and I. P. Ol’khovskaya, “Physicochemical regularities of the biological effect of highly disperse metal powders,” Khim. Fiz. 21 (4), 79–85 (2002).

    Google Scholar 

  20. A. A. Rakhmetova, T. P. Alekseeva, O. A. Bogoslovskaya, I. O. Leipunskii, I. P. Ol’khovskaya, A. N. Zhigach, and N. N. Glushchenko, “Wound-healing properties of copper nanoparticles as a function of physicochemical parameters,” Nanotechnol. Russ. 5, 271–276 (2010).

    Article  Google Scholar 

  21. O. A. Bogoslovskaja, A. A. Rakhmetova, M. N. Ovsyannikova, I. P. Olkhovskaya, and N. N. Gluschenko, “Antibacterial effect of copper nanoparticles with differing dispersion and phase composition,” Nanotechnol. Russ. 9, 82–86 (2014).

    Article  Google Scholar 

  22. A. A. Rakhmetova, O. A. Bogoslovskaja, I. P. Olkhovskaya, A. N. Zhigach, A. V. Ilyina, V. P. Varlamov, and N. N. Gluschenko, “Concomitant action of organic and inorganic nanoparticles in wound healing and antibacterial resistance: chitosan and copper nanoparticles in an ointment as an example,” Nanotechnol. Russ. 10, 149–156 (2015).

    Article  Google Scholar 

  23. M. Ya. Gen, and A. V. Miller, USSR Inventor’s Certificate No. 814432, Byull. Izobret., No. 11 (1981), p. 25.

    Google Scholar 

  24. A. N. Jigatch, I. O. Leipunskii, M. L. Kuskov, N. I. Stoenko, and V. B. Storozhev, “An apparatus for the production and study of metal nanoparticles,” Instrum. Exp. Tech. 43, 839 (2000).

    Article  Google Scholar 

  25. Zhao Hui, Liu Min, Chen Yu, Lu Jinying, Li Huacheng, Sun Qiao, G. S. Nechitailo, A. N. Zhigach, I. O. Leipunskii, O. A. Bogoslovskaya, A. A. Rakhmetova, and N. N. Glushchenko, “The method of growing plants using metal nanoparticles and a nutrient medium for its implementation,” RF Patent No. 2612319, Byull. No. 7 (2017).

  26. T. Murashige and F. Skoog, “A received medium for rapid growth and bio-assays with tobacco tissue culture,” Physiol. Plant. 15, 473–497 (1962).

    Article  Google Scholar 

  27. O. O. Adebusoye, J. Ping’an, and A. Sina, “Effect of phytohormones, phosphorus and potassium on cotton varieties (gossipium hirsutum) root growth and root activity grown in hydroponic nutrient solution,” J. Agric. Sci. 4, 93–110 (2012).

    Google Scholar 

  28. H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy,” Curr. Protoc. Food Anal. Chem., F4.3.1–F4.3.8 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Bogoslovskaya.

Additional information

Original Russian Text © G.S. Nechitailo, O.A. Bogoslovskaya, I.P. Ol’khovskaya, N.N. Glushchenko, 2018, published in Rossiiskie Nanotekhnologii, 2018, Vol. 13, Nos. 3–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechitailo, G.S., Bogoslovskaya, O.A., Ol’khovskaya, I.P. et al. Influence of Iron, Zinc, and Copper Nanoparticles on Some Growth Indices of Pepper Plants. Nanotechnol Russia 13, 161–167 (2018). https://doi.org/10.1134/S1995078018020052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018020052

Navigation