Skip to main content
Log in

Reliability Prediction of AlGaAs Resonant-Tunneling Diodes and Nonlinear Converters of Microwave Radio Signals Based on Them

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Using a resonant-tunneling diode (RTD) as a nonlinear element of microwave signal converters is discussed. The research results of degradation of RTDs during the operation are given. The diffusion coefficients of Al in a resonant-tunneling structure (RTS) and of Si in near-contact zones of the RTD are determined. The structure of a diagnostic model of an RTD and the methodology of creating a reliability prediction of RTDs and nonlinear converters of microwave radio signals based on them are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. L. G. Solner et al., Appl. Phys. Lett. 43, 588 (1983).

    Article  Google Scholar 

  2. E. R. Brown, W. D. Goodhue, and T. C. L. G. Solner, J. Appl. Phys. 64, 1519 (1988).

    Article  Google Scholar 

  3. Yu. A. Ivanov, S. A. Meshkov, V. D. Shashurin, N. V. Fedorkova, and I. A. Fedorenko, “Subharmonic mixer with improved intermodulation characteristics based on a resonant tunnel diode,” J. Commun. Technol. Electron. 55, 921 (2010).

    Article  Google Scholar 

  4. Yu. A. Ivanov, S. A. Meshkov, N. V. Fedorkova, I. B. Fedorov, V. D. Shashurin, and V. Yu. Sinyakin, “Increase of quality of radio-electronic systems of new generation due to application of resonant tunneling nanodiodes. Part 1,” Nanoinzheneriya, No. 1, 34–44 (2011).

    Google Scholar 

  5. Yu. A. Ivanov, S. A. Meshkov, N. V. Fedorkova, I. B. Fedorov, V. D. Shashurin, and V. Yu. Sinyakin, “Increase of quality of radio-electronic systems of new generation due to application of resonant tunneling nanodiodes. Part 2,” Nanoinzheneriya, No. 2, 93–95 (2011).

    Google Scholar 

  6. S. A. Meshkov, Yu. A. Ivanov, N. A. Vetrova, V. V. Nazarov, V. Yu. Sinyakin, I. A. Fedorenko, N. V. Fedorkova, and V. D. Shashurin, “Prospects of development of nonlinear radio signal converters based on resonant-tunneling nanodiodes,” Vestn. Mosk. Tekh. Univ. Baumana, Ser. Priborostroen., No. 4 (89), 100–113 (2012).

    Google Scholar 

  7. Yu. A. Ivanov, A. G. Gudkov, S. A. Meshkov, V. D. Shashurin, V. A. Klevtsov, S. V. Agasieva, and V. Yu. Sinyakin, “Resonant-tunneling nano-diodes application for radio frequency identification technology based invasive biosensor systems' electromagnetic energy transformers efficiency increase,” Elektromagn. Volny Elektron. Sist. 22 (4), 60–65 (2014).

    Google Scholar 

  8. V. Yu. Sinyakin, Yu. A. Ivanov, A. I. Ivanov, M. O. Makeev, S. A. Meshkov, and A. A. Zybin, “The use of RTD in rectifiers of microwave signals of micro watt power,” in Proceedings of the 25th International Crimean Conference on Microwave and Telecommunication Technology CriMiCo’2015, Sevastopol, 2015, pp. 263–264.

  9. K. Finkenzeller, RFID Handbook Fundamentals and Applications in Contactless Smart Cards and Identification, 3rd ed. (Wiley, Chichester, 2010).

    Google Scholar 

  10. H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Diffusion-Controlled Processes (LE-TEX Jelonek, Schmidt and VocklerGbR, Leipzig, 2007).

    Google Scholar 

  11. D. J. Fisher, Diffusion in GaAs and Other III–V Semiconductors, 10 Years of Research (Scitec Publ., Switzerland, 1998).

    Google Scholar 

  12. H. M. You, U. M. Gösele, and T. Y. Tan, “Simulation of the transient indiffusion-segregation process of triply negatively charged Ga vacancies in GaAs and AlAs/GaAs superlattices,” J. Appl. Phys. 74, 2461–2470 (1993).

    Article  Google Scholar 

  13. C.-H. Chen, U. M. Gösele, and T. Y. Tan, “Dopant diffusion and segregation in semiconductor heterostructures: Part III, diffusion of Si into GaAs,” Appl. Phys. A 69, 313–321 (1999).

    Article  Google Scholar 

  14. B. Chen, Q.-M. Zhang, and J. Bernholc, “Si diffusion in GaAs and Si-induced interdiffusion in GaAs/AlAs superlattices,” Phys. Rev. B 49, 2985–2988 (1994).

    Article  Google Scholar 

  15. H. Bracht, E. E. Haller, K. Eberl, and M. Cardona, “Self-and interdiffusion in AlxGa1–xAs/GaAs isotope heterostructures,” Appl. Phys. Lett. 74, 49–51 (1999).

    Article  Google Scholar 

  16. S. F. Wee, M. K. Chai, K. P. Homewood, and W. P. Gillin, “The activation energy for GaAs/AlGaAs interdiffusion,” J. Appl. Phys. 82, 4842–4846 (1997).

    Article  Google Scholar 

  17. H. Ono, N. Ikarashi, and T. Baba, “Al diffusion into GaAs monatomic AlAs layers investigated by localized vibrational modes,” Appl. Phys. Lett. 66, 601–603 (1995).

    Article  Google Scholar 

  18. M. O. Makeev, Yu. A. Ivanov, S. A. Meshkov, and V. Yu. Sinyakin, “Investigation of thermal degradation of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures,” Nano-Mikrosist. Tekh., No. 12, 23–29 (2014).

    Google Scholar 

  19. M. O. Makeev, Y. A. Ivanov, and S. A. Meshkov, “Quality diagnostics of nanoscale AlAs/GaAs resonant tunnelling heterostructures based on IR-spectroscopic ellipsometry,” J. Phys.: Conf. Ser. 584, 012014 (2015). doi 10.1088/1742-6596/584/1/012014

    Google Scholar 

  20. M. O. Makeev, Yu. A. Ivanov, and S. A. Meshkov, “Assessment of the resistance to diffusion destruction of AlAs/GaAs nanoscale resonant-tunneling heterostructures by IR spectral ellipsometry,” Semiconductors 50, 66 (2016).

    Article  Google Scholar 

  21. O. P. Gludkin, Methods and Devices Tests RJeS and JeVS, The Handbook for Higher Schools (Vyssh. Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  22. V. A. Gaisler, D. A. Tenne, N. T. Moshegov, A. I. Toropov, A. A. Yaskin, and A. P. Shebanin, “Phonon spectrum superlattices GaAs/AlAs: the direct and inverse spectral problems,” Phys. Solid State 38, 1235 (1996).

    Google Scholar 

  23. B. Samson et al., “Effects of interface broadening on far-infrared and Raman spectra of GaAs/AlAs superlattices,” Phys. Rev. B 46, 2375 (1992).

    Article  Google Scholar 

  24. N. Hara and T. Katoda, “Characterization of interdiffusion coefficients in GaAs–AlAs superlattices with laser Raman spectroscopy,” J. Appl. Phys. 69, 2112–2116 (1991).

    Article  Google Scholar 

  25. V. A. Vashchenko and V. F. Sinkevitch, Physical Limitations of Semiconductor Devices (Springer Science, New York, 2008).

    Book  Google Scholar 

  26. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22, 562–564 (1973).

    Article  Google Scholar 

  27. A. S. Pronikov, Parametric Reliability of Machines (Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Naraikin.

Additional information

Original Russian Text © S.A. Kozubnyak, S.A. Meshkov, O.S. Naraikin, E.N. Soboleva, V.D. Shashurin, 2017, published in Rossiiskie Nanotekhnologii, 2017, Vol. 12, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozubnyak, S.A., Meshkov, S.A., Naraikin, O.S. et al. Reliability Prediction of AlGaAs Resonant-Tunneling Diodes and Nonlinear Converters of Microwave Radio Signals Based on Them. Nanotechnol Russia 12, 360–368 (2017). https://doi.org/10.1134/S1995078017040127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078017040127

Navigation