Skip to main content
Log in

Simulating the nucleation and growth of Ge quantum dots on Si using high-efficiency algorithms

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Original approaches are presented for elucidating a microscopic mechanism of surface atomic diffusion and simulating the heteroepitaxial nanostructure growth on substrates with a complex relief. Using the molecular dynamics method, the energy surface of a pit-patterned Si substrate is mapped out and the conditions for the nucleation of more than one Ge island in a pit are established. A Monte Carlo model is developed that reproduces the Ge growth on Si with regard to elastic effects in a heterosystem. By the example of this Monte Carlo model, it is demonstrated how to reduce the calculation time by optimizing the description of the crystal lattice state in computer cache memory and by using parallel algorithms for working on a computer cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bauer and P. Schäffler, “Self-assembled Si and SiGe nanostructures: new growth concepts and structural analysis,” Phys. Status Solidi 203 (14), 3496 (2006).

    Article  Google Scholar 

  2. V. Pascale, I. Berbezier, A. Ronda, et al., “Self-assembly and ordering mechanisms of Ge Islands on prepatterned Si(001),” Phys. Rev. B 77 (7), 075311 (2008).

    Article  Google Scholar 

  3. C. Dais, H. H. Solak, Ya. Ekinci, et al., “Ge quantum dot molecules and crystals: preparation and properties,” Surf. Sci. 601 (13), 2787 (2007).

    Article  Google Scholar 

  4. Zh. Smagina, P. Novikov, V. Zinovyev, N. Stepina, A. Dvurechenskii, Vl. Armbrister, V. Seleznev, and P. Kuchinskaya, “Nucleation and epitaxial growth of Ge nanoislands on Si surface prepatterned by ion irradiation,” Phys. Status Solidi A 210 (8), 1522 (2013).

    Article  Google Scholar 

  5. J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Phys. Rev. B 37 (12), 6991 (1988).

    Article  Google Scholar 

  6. P. Novikov, J. Smagina, D. Vlasov, A. Deryabin, A. Kozhukhov, and A. Dvurechenskii, “Space arrangement of Ge nanoislands formed by growth of Ge on pitpatterned Si substrates,” J. Cryst. Growth 323 (1), 198 (2011).

    Article  Google Scholar 

  7. V. G. Dubrovskii, The Theory of Epitaxial Nanostructures Formation (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  8. A. Baskaran, J. Devita, and P. Smereka, “Kinetic Monte Carlo simulation of strained heteroepitaxual growth with intermixing,” Continuum Mech. Thermodynam. 22 (1), 1 (2010).

    Article  Google Scholar 

  9. M. Biehl, F. Much, and C. Vey, “Off-lattice kinetic Monte Carlo simulations of strained heteroepitaxual growth,” Int. Ser. Num. Math. 149, 41 (2005).

    Article  Google Scholar 

  10. J. V. Smagina, V. A. Zinov’ev, A. V. Nenashev, et al., “Self-assembly of germanium islands under pulsed irradiation by a low-energy ion beam during heteroepitaxy of Ge/Si(100) structures,” JETP 106 (3), 517 (2008).

    Article  Google Scholar 

  11. O. Venäläinen, J. Heiniö, and K. Kaski, “Stranski-Krastanov growth of thin film: Monte Carlo simulation,” Phys. Scripta 38, 66 (1991).

    Article  Google Scholar 

  12. L. Nurminen, A. Kuronen, and K. Kaski, “Kinetic Monte Carlo simulation of nucleation on patterned substrates,” Phys. Rev. B 63 (3), 035407 (2000).

    Article  Google Scholar 

  13. P. P. Petrov and W. Miller, “Kinetic Monte Carlo simulation of the wetting layer in Stranski-Krastanov heteroepitaxial growth,” Comput. Mater. Sci. 60, 176 (2012).

    Article  Google Scholar 

  14. T. P. Schulze and P. Smereka, “Kinetic Monte Carlo simulation of heteroepitaxial growth: wetting layers, quantum dots, capping, and nanorings,” Phys. Rev. B 86 (23), 235313 (2012).

    Article  Google Scholar 

  15. A. V. Nenashev, Zh. V. Smagina, S. A. Rudin, and A. V. Dvurechenskii, “Epitaxial growth of Ge/Si nanostructures under ion radiation,” in Proc. 17th Int. Symp. “Nanophysics and Nanoelectronics” (Oktyabr’skii Village, Nizhni Novgorod Region, 2013), Vol. 2, p. 538.

    Google Scholar 

  16. D. D. Vvedensky and S. Clarke, “Recovery kinetics during interrupted epitaxial growth,” Surf. Sci. 255, 373 (1990).

    Article  Google Scholar 

  17. G. V. Hansson and M. I. Larson, “Initial staged of Si molecular beam epitaxy on Si(100) studied with reflection high-energy electron-diffraction intensity measurements and Monte Carlo simulation,” Surf. Sci. 321, 1255 (1994).

    Google Scholar 

  18. P. N. Keating, “Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure,” Phys. Rev. 145 (2), 637 (1966).

    Article  Google Scholar 

  19. A. I. Yakimov, A. V. Dvurechenskii, and A. I. Nikiforov, “Germanium self-assembled quantum dots in silicon for nano- and optoelectronics,” J. Nanoelectron. Optoelectron. 1, 119 (2006).

    Article  Google Scholar 

  20. V. M. Kaganer and K. H. Ploog, “Energies of strained vicinal surfaces and strained islands,” Phys. Rev. B 64 (20), 205301 (2001).

    Article  Google Scholar 

  21. J. Tersoff, C. Teichert, and M. G. Lagally, “Self-organization in growth of quantum dot superlattices,” Phys. Rev. Lett. 76 (10), 1675 (1996).

    Article  Google Scholar 

  22. Thanh Vinn Le, V. Yam, P. Boucaud, et al., “Vertically self-organized Ge/Si(001) quantum dots in multilayer structures,” Phys. Rev. B 60 (8), 5851 (1999).

    Article  Google Scholar 

  23. A. Fogg, The microarchitecture of Intel, AMD and VIA CPUs. An optimization guide for assembly programmers and compiler makers. www.agner.org/optimize/microarchitecture.pdf

  24. U. Drepper. What Every Programmer Should Know about Memory (2007). http://www.akkadia.org/drepper/cpumemory.pdf

    Google Scholar 

  25. J. C. Wagner, “Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses,” Progr. Nucl. Sci. Technol. 2, 815 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Novikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, P.L., Nenashev, A.V., Rudin, S.A. et al. Simulating the nucleation and growth of Ge quantum dots on Si using high-efficiency algorithms. Nanotechnol Russia 10, 192–204 (2015). https://doi.org/10.1134/S1995078015020147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015020147

Keywords

Navigation