Skip to main content
Log in

Oxidative Cracking of Propane in a Plug-Flow Laboratory Reactor

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents the results of experiments on the oxidative cracking of propane at a pressure of 1 to 2 atm and moderate temperatures (T ≤ 1000 K) in a laboratory-scale reactor. Nitrogen and methane are used as the diluent gases. Kinetic models are analyzed to describe the studied process. The necessity of taking into account heterogeneous reactions on the reactor surface is shown. The introduction of additional stages in the kinetic model, which take into account heterogeneous reactions on the reactor surface, makes it possible to obtain an almost quantitative agreement between the calculations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. S. Arutyunov, R. N. Magomedov, A. Yu. Proshina, and L. N. Strekova, Chem. Eng. J. 238, 9 (2014). https://doi.org/10.1016/j.cej.2013.10.009

    Article  CAS  Google Scholar 

  2. V. S. Arutyunov, A. S. Dmitruk, and A. V. Nikitin, Russ. Chem. Bull. 65, 2405 (2016). https://doi.org/10.1007/s11172-016-1597-3

    Article  CAS  Google Scholar 

  3. R. N. Magomedov, A. Yu. Proshina, and V. S. Arutyunov, Kinet. Catal. 54, 383 (2013). https://doi.org/10.1134/S0023158413040113

    Article  CAS  Google Scholar 

  4. R. N. Magomedov, A. Yu. Proshina, B. V. Peshnev, and V. S. Arutyunov, Kinet. Catal. 54, 394 (2013). https://doi.org/10.1134/S0023158413040125

    Article  CAS  Google Scholar 

  5. A. S. Dmitruk, A. V. Nikitin, L. N. Strekova, and V. S. Arutyunov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2016), Iss. 9, No. 3, p. 21.

  6. J. Huang and W. K. Bushe, Combust. Flame 144, 74 (2006). https://doi.org/10.1016/j.combustflame.2005.06.013

    Article  CAS  Google Scholar 

  7. E. L. Petersen, D. M. Kalitan, S. Simmons, et al., Proc. Combust. Inst. 31, 447 (2007). https://doi.org/10.1016/j.proci.2006.08.034

    Article  CAS  Google Scholar 

  8. J. C. Prince, C. Treviño, and F. A. Williams, Combust. Flame 175, 27 (2017). https://doi.org/10.1016/j.combustflame.2016.06.033

    Article  CAS  Google Scholar 

  9. D. Healy, D. M. Kalitan, C. J. Aul, et al., Energy Fuels 24, 1521 (2010). https://doi.org/10.1021/ef9011005

    Article  CAS  Google Scholar 

  10. D. Healy, M. M. Kopp, N. L. Polley, et al., Energy Fuels 24, 1617 (2010). https://doi.org/10.1021/ef901292j

    Article  CAS  Google Scholar 

  11. N. Donato, C. Aul, E. Petersen, et al., J. Eng. Gas Turbine Power 132, 051502 (2010). https://doi.org/10.1115/1.3204654

    Article  CAS  Google Scholar 

  12. D. Healy, N. S. Donato, C. J. Aul, et al., Combust. Flame 157, 1526 (2010). https://doi.org/10.1016/j.combustflame.2010.01.016

    Article  CAS  Google Scholar 

  13. D. Healy, N. S. Donato, C. J. Aul, et al., Combust. Flame 157, 1540 (2010). https://doi.org/10.1016/j.combustflame.2010.01.011

    Article  CAS  Google Scholar 

  14. D. Healy, D. M. Kalitan, C. J. Aul, et al., Energy Fuels 24, 1521 (2010). https://doi.org/10.1021/ef9011005

    Article  CAS  Google Scholar 

  15. K. Zhang, C. Banyon, C. Togbé, et al., Combust. Flame 162, 4194 (2015). https://doi.org/10.1016/j.combustflame.2015.08.001

    Article  CAS  Google Scholar 

  16. K. Zhang, C. Banyon, J. Bugler, et al., Combust. Flame 172, 116 (2016). https://doi.org/10.1016/j.combustflame.2016.06.028

    Article  CAS  Google Scholar 

  17. G. Bourque, D. Healy, H. J. Curran, et al., Proc. ASME Turbo Expo. 3, 1051 (2008). https://doi.org/10.1115/GT2008-51344

  18. C1-C16 HT + LT + NOx mechanism, The CRECK Modeling Group, Politecnico di Milano. http://creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms/107-category-kinetic-mechanisms/406-mechanisms-1911-tot-ht-lt-nox/. Accessed 2020.

  19. NUIGMech 1.1. https://c3.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/

  20. S. Martinez, M. Baigmohammadi, V. Patel, et al., Combust. Flame 228, 401 (2021). https://doi.org/10.1016/j.combustflame.2021.02.009

    Article  CAS  Google Scholar 

  21. Gri-Mech 3.0. http://combustion.berkeley.edu/gri_ mech/version30/text30.html/

  22. W. K. Metcalfe, S. M. Burke, S. S. Ahmed, and H. J. Curran, J. Chem. Kinet. 45, 638 (2013). https://doi.org/10.1002/kin.20802

    Article  CAS  Google Scholar 

  23. Y. Li, C. W. Zhou, K. P. Somers, et al., Proc. Combust. Inst. 36, 403 (2016). https://doi.org/10.1016/j.proci.2016.05.052

    Article  CAS  Google Scholar 

  24. C.-W. Zhou, Y. Li, E. O’Connor, et al., Combust. Flame 167, 353 (2016). https://doi.org/10.1016/j.combustflame.2016.01.021

    Article  CAS  Google Scholar 

  25. C.-W. Zhou, Y. Li, U. Burke, et al., Combust. Flame 197, 423 (2018). https://doi.org/10.1016/j.combustflame.2018.08.006

    Article  CAS  Google Scholar 

  26. M. G. Bryukov, A. S. Palankoeva, A. A. Belyaev, and V. S. Arutyunov, Kinet. Catal. 62, 703 (2021). https://doi.org/10.1134/S0023158421060021

    Article  CAS  Google Scholar 

  27. J. A. Miller and S. J. Klippenstein, Int. J. Chem. Kinet. 33, 654 (2001). https://doi.org/10.1002/kin.1063

    Article  CAS  Google Scholar 

  28. A. S. Palankoeva, Ya. S. Zimin, M. G. Bryukov, A. A. Belyaev, and V. S. Arutyunov, Gorenie Vzryv 14 (4), 42 (2021). https://doi.org/10.30826/CE

    Google Scholar 

  29. Chemical Workbench 4.3. Kintech Laboratory. http://www.kintechlab.com/products/chemical-workbench/. Accessed 2021.

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research and the Science Committee of the Republic of Armenia as part of scientific project no. 20-53-05001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Palankoeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palankoeva, A.S., Belyaev, A.A. & Arutyunov, V.S. Oxidative Cracking of Propane in a Plug-Flow Laboratory Reactor. Russ. J. Phys. Chem. B 16, 399–406 (2022). https://doi.org/10.1134/S1990793122030204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793122030204

Keywords:

Navigation