Skip to main content
Log in

Effect of Ozone on the Structure and Dynamics of Polylactide-Polyethylene Blends

  • PHYSICAL METHODS FOR STUDYING CHEMICAL REACTIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study the effect of ozone on the structural and dynamic characteristics of polymeric mixtures of polylactide–low density polyethylene (LDPE) of various compositions is investigated. It is shown by the method of electron paramagnetic resonance that the segmental mobility in the amorphous phase is higher in mixtures with a predominance of polyethylene. After ozone exposure at T = (20 ± 2)°C for 16 h, the correlation time of the probe rotation decreases for all samples. It is determined by differential scanning calorimetry that the melting point of polylactide decreases by 2–4°С, and the glass transition temperature, by 1–3°C; and at the same time, the degree of crystallinity increases by 3–6%. The thermophysical characteristics of LDPE are observed to decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Ge, Z. Zeng, M. Arowo, et al., Chemosphere 146, 413 (2016). https://doi.org/10.1016/j.chemosphere.2015.12.058

    Article  CAS  PubMed  Google Scholar 

  2. E. Olewnik-Kruszkowska, J. Nowaczyk, and K. Kadac, Polym. Test. 56, 299 (2016). https://doi.org/10.1016/j.polymertesting.2016.10.030

    Article  CAS  Google Scholar 

  3. H. Zhou, J. Liu, H. Xia, et al., Chem. Eng. J. 269, 245 (2015). https://doi.org/10.1016/j.cej.2015.01.116

    Article  CAS  Google Scholar 

  4. L. Wang, Y. Luo, X. Luo, et al., Food Control. 66, 137 (2016).https://doi.org/10.1016/j.foodcont.2016.01.038

  5. Z. Zeng, H. Zou, X. Li, et al., Chem. Eng. J. 229, 404 (2013). https://doi.org/10.1016/j.cej.2013.06.018

    Article  CAS  Google Scholar 

  6. C. Huang, Y. Shi, Gamal M. El-Din, and Y. Liu, Int. Biodeterior. Biodegr. 112, 31 (2016). https://doi.org/10.1016/j.ibiod.2016.04.037

    Article  CAS  Google Scholar 

  7. E. Olewnik-Kruszkowska, J. Nowaczyk, and K. Kadac, Polym. Test. 60, 283 (2017). https://doi.org/10.1016/j.polymertesting.2017.04.009

    Article  CAS  Google Scholar 

  8. R. O. F. Verkuijlen, M. H. A. van Dongen, A. A. E. Stevens, et al., Appl. Surf. Sci. 290, 381 (2014). https://doi.org/10.1016/j.apsusc.2013.11.089

    Article  CAS  Google Scholar 

  9. A. Mahfoudh, F. Poncin-Epaillard, M. Moisan, and J. Barbeau, Surf. Sci. 604, 1487 (2010). https://doi.org/10.1016/j.susc.2010.05.013

    Article  CAS  Google Scholar 

  10. A. Delplanque, E. Henry, J. Lautru, et al., Appl. Surf. Sci. 314, 280 (2014). https://doi.org/10.1016/j.apsusc.2014.06.053

    Article  CAS  Google Scholar 

  11. G. Meijers and P. Gijsman, Polym. Degrad. Stab. 74, 387 (2001). https://doi.org/10.1016/S0141-3910(01)00160-4

    Article  CAS  Google Scholar 

  12. W. Yue, R. He, P. Yao, and Y. Wei, Carbohydr. Polym. 77, 639 (2009). https://doi.org/10.1016/j.carbpol.2009.02.015

    Article  CAS  Google Scholar 

  13. S. Miwa, Y. Ohtake, and S. Kawahara, Polym. Degrad. Stab. 128, 193 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.013

    Article  CAS  Google Scholar 

  14. D. Garlotta, J. Polym. Environ. 9, 63 (2001). https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  15. Yu. V. Tertyshnaya, S. G. Karpova, and A. A. Popov, Russ. J. Phys. Chem. B 11, 531 (2017). https://doi.org/10.1134/S1990793117030241

    Article  CAS  Google Scholar 

  16. V. Piemonte and F. Gironi, J. Polym. Environ. 21, 313 (2013). https://doi.org/10.1007/s10924-012-0547-x

    Article  CAS  Google Scholar 

  17. Yu. V. Tertyshnaya and A. A. Popov, Vse Mater. Entsikl. Sprav., No. 9, 42 (2019). https://doi.org/10.31044/1994-6260-2019-0-9-42-47

  18. E. Olewnik-Kruszkowska, Polym. Degrad. Stab. 129, 87 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.04.009

    Article  CAS  Google Scholar 

  19. M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, Russ. J. Phys. Chem. B 8, 726 (2014). https://doi.org/10.1134/S1990793114050078

    Article  CAS  Google Scholar 

  20. L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  21. M. V. Podzorova and Yu. V. Tertyshnaya, Russ. J. Appl. Chem. 92, 767 (2019). https://doi.org/10.1134/S1070427219060065

    Article  CAS  Google Scholar 

  22. X. Zhou, J. C. Feng, J. J. Yi, and L. Wang, Mater. Des., No. 49, 502 (2013). https://doi.org/10.1016/j.matdes.2013.01.069

  23. N. M. Emanuel’ and A. L. Buchachenko, Chemical Physics of Aging and Stabilization of Polymers (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  24. E. T. Denisov, Oxidation and Destruction of Carbon Chain Polymers (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  25. Yu. V. Tertyshnaya, M. V. Podzorova, T. V. Monakhova, and A. A. Popov, Russ. J. Phys. Chem. B 13, 354 (2019). https://doi.org/10.1134/S1990793119020106

    Article  CAS  Google Scholar 

  26. M. V. Podzorova, Yu. V. Tertyshnaya, T. V. Monakhova, and A. A. Popov, Russ. J. Phys. Chem. B 10, 825 (2016).

    Article  CAS  Google Scholar 

  27. T. Okihara, K. Okumura, and A. Kawaguchi, J. Macromol. Sci. Phys. 42, 875 (2003).

    Article  Google Scholar 

  28. Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, Polymer Sci., Ser. A 58, 50 (2016). https://doi.org/10.1134/S0965545X16010119

    Article  CAS  Google Scholar 

  29. Yu. V. Tertyshnaya and M. V. Podzorova, Russ. J. Phys. Chem. B 14, 167 (2020). https://doi.org/10.1134/S1990793120010170

    Article  CAS  Google Scholar 

  30. I. K. Larin, Russ. J. Phys. Chem. B 13, 548 (2019). https://doi.org/10.1134/S0207401X1905008X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out with the instruments of the Center for Collective Usage (Emanuel Institute of Biochemical Physics, Russian Academy of Sciences) “New materials and technologies.” The authors are grateful to the Plekhanov Russian University of Economics for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tertyshnaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertyshnaya, Y.V., Karpova, S.G. & Podzorova, M.V. Effect of Ozone on the Structure and Dynamics of Polylactide-Polyethylene Blends. Russ. J. Phys. Chem. B 15, 854–860 (2021). https://doi.org/10.1134/S1990793121050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121050092

Keywords:

Navigation