Skip to main content
Log in

Changes in the Relative Nitric Oxide Content in the Cortex of a Rat Brain in the Acute Ischemia Model

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This study uses the electron paramagnetic resonance (EPR) method to study changes in the relative nitric oxygen content in the cortex of a rat brain in conditions of acute ischemia. Laser-induced vascular thrombosis is used as the model of ischemia. Rose bengal is administered into the bloodstream beforehand. In response to laser beaming, it generates reactive oxygen species, which induces protein coagulation, vascular wall damage, and, as a consequence, the formation of thrombus. It is shown histologically that the acute ischemic process ends a day after the laser surgery, and active remission, with the corresponding morphological changes in the area of the lesion, starts within three days. The relative nitric oxide content is determined 1 and 3 days after the brain vascular photothrombosis using the NO–Fe–DETC paramagnetic complex as a spin trap. The nitric oxide content is estimated by the extreme lower field of the EPR spectrum of this complex. It is shown that a significant increase in the relative nitric oxide (NO) content occurs on the third day after laser surgery and coincides with the beginning of remission after the acute ischemia. A possible role of nitric oxide in the remission is discussed in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. R. Vincent, Progr. Neurobiol. 42, 129 (1994).

    Article  CAS  Google Scholar 

  2. D. S. Bredt and S. H. Snyder, Ann. Rev. Biochem. 63, 175 (1994).

    Article  CAS  Google Scholar 

  3. D. H. Shin, H. Y. Lee, H. J. Kim, et al., Neurosci. Lett. 270, 53 (1999).

    Article  CAS  Google Scholar 

  4. E. W. Cheon, C. H. Park, S. S. Kang, et al., Neuroreport 14, 329 (2003).

    Article  CAS  Google Scholar 

  5. J. Mares, K. Nohejlova, P. Stopka, et al., Physiol. Res. 65, 853 (2016).

    Article  CAS  Google Scholar 

  6. B. L. Psikha, N. I. Neshev, E. M. Sokolova, and N. A. Sanina, Russ. J. Phys. Chem. B 14, 571 (2020).

    Article  CAS  Google Scholar 

  7. D. H. Shin, H. Y. Lee, H. J. Kim, et al., Neurosci. Lett. 270, 53 (1999).

    Article  CAS  Google Scholar 

  8. E. W. Cheon, C. H. Park, S. S. Kang, et al., Neuroreport 14, 329 (2003).

    Article  CAS  Google Scholar 

  9. J. J. Lopez-Costa, J. Goldstein, and J. P. Saavedra, Neurosci. Lett. 232, 155 (1997).

    Article  CAS  Google Scholar 

  10. C. Iadecola, Trends Neurosci. 20, 132 (1997).

    Article  CAS  Google Scholar 

  11. L. Zheng, J. Ding, and J. Wang, Anatom. Rec. 299, 246 (2016).

    Article  CAS  Google Scholar 

  12. V. Labat-gest and S. Tomasi, J. Vis. Exp. 9, 50370 (2013). https://doi.org/10.3791/50370

    Article  CAS  Google Scholar 

  13. B. D. Watson, W. D. Dietrich, R. Busto, et al., Ann. Neurol. 17, 497 (1985).

    Article  CAS  Google Scholar 

  14. A. M. Shakhov, A. A. Astaf’ev, A. A. Osychenko, and V. A. Nadtochenko, Russ. J. Phys. Chem. B 10, 816 (2016).

    Article  CAS  Google Scholar 

  15. B. Gajkowska, M. Frontczak-Baniewicz, R. Gadamski, et al., Acta Neurobiol. Exp. 57, 203 (1997).

    CAS  Google Scholar 

  16. A. R. Saniabadi, K. Umemura, N. Matsumoto, et al., Thromb. Haemost. 73, 868 (1995).

    Article  CAS  Google Scholar 

  17. B. Romeis, Mikroskopische Technik (Oldenbourg, München, 1968).

    Google Scholar 

  18. T. S. Konstantinova, A. E. Bugrova, T. F. Shevchenko, A. F. Vanin, and G. R. Kalamkarov, Biophysics 57, 229 (2012).

    Article  CAS  Google Scholar 

  19. A. L. Kovarskii, V. V. Kasparov, A. V. Krivandin, O. V. Shatalova, R. A. Korokhin and A. M. Kuperman, Russ. J. Phys. Chem. B 11, 233 (2017).

    Article  CAS  Google Scholar 

  20. A. P. Vorotnikov, Russ. J. Phys. Chem. B 9, 866 (2015).

    Article  CAS  Google Scholar 

  21. A. F. Vanin, A. Huisman, and E. E. van Faassen, Methods Enzimol. 359, 27 (2002).

    Article  CAS  Google Scholar 

  22. M. Yu. Obolenskaya, A. F. Vanin, P. I. Mordvintcev, A. Molsch, and K. Decker, Biophys. Biochem. Res. Commun. 202, 571 (1994).

    Article  CAS  Google Scholar 

  23. J. P. Bolanos and A. Almeida, Biochim. Biophys. Acta 1411, 415 (1999).

    Article  CAS  Google Scholar 

  24. Shinya Sato, T. Tominaga, T. Ohnishi, et al., Biochim. Biophys. Acta 1181, 195 (1993).

    Article  Google Scholar 

  25. T. Tominaga, S. Sato, T. Ohnishi, and S. T. Ohnishi, Brain Res. 614, 342 (1993).

    Article  CAS  Google Scholar 

  26. A. V. Lobanov, G. I. Kobzev, K. S. Davydov, and G. G. Komissarov, Russ. J. Phys. Chem. B 8, 277 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Shevchenko.

Additional information

Translated by A. M. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, T.S., Shevchenko, T.F., Barskov, I.V. et al. Changes in the Relative Nitric Oxide Content in the Cortex of a Rat Brain in the Acute Ischemia Model. Russ. J. Phys. Chem. B 15, 119–122 (2021). https://doi.org/10.1134/S1990793121010218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121010218

Keywords:

Navigation