Skip to main content
Log in

Competition of Phase Separation Processes during Quasi-Isothermal Foaming of Polylactide in Carbon Dioxide Environment

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanisms that control the nucleation kinetics in foamed amorphous D,L-polylactide, which was preliminary plasticized using subcritical or supercritical carbon dioxide, were determined by analyzing the video data on the depressurization-induced quasi-isothermal (313.3 K) foaming of the polymer. Possible scenarios of phase separation in the polylactide–carbon dioxide system at the stage preceding active foam formation were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. J. Mooney, D. F. Baldwin, N. P. Suht, J. P. Vacantis, and R. Larger, Biomaterials 17, 1417 (1996).

    Article  CAS  Google Scholar 

  2. S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., 109 (2001).

  3. S. E. Bogorodskii, L. I. Krotova, A. V. Mironov, and V. K. Popov, Russ. J. Phys. Chem. B 7, 916 (2013).

    Article  CAS  Google Scholar 

  4. M. Nofar and C. B. Park, Polylactide Foams. Polylactide, Fundamentals, Manufacturing and Applications (Elsevier, William Andew, Oxford, UK, 2017), p. 272.

  5. S. E. Bogorodskii, V. N. Vasilets, L. I. Krotova, S. A. Minaeva, A. V. Mironov, E. A. Nemets, V. A. Surguchenko, V. K. Popov, and V. I. Sevast’yanov, Perspekt. Mater. 5, 44 (2013).

    Google Scholar 

  6. E. Kiran, J. Supercrit. Fluids 110, 126 (2016).

    Article  CAS  Google Scholar 

  7. H. Tai, M. L. Mather, D. Howard, W. Wang, L. J. White, J. A. Crowe, S. P. Morgan, A. Chandra, D. J. Williams, S. M. Howdle, and K. M. Shakesheff, Eur. Cells Mater. 14, 64 (2007).

    Article  CAS  Google Scholar 

  8. E. Reverchon and S. Cardea, J. Supercrit. Fluids 40, 144 (2007).

    Article  CAS  Google Scholar 

  9. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, and P. A. Netti, J. Mater. Sci.: Mater. Med. 20, 2043 (2009).

    CAS  Google Scholar 

  10. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, and P. A. Netti, Compos. Sci. Technol. 70, 1838 (2010).

    Article  CAS  Google Scholar 

  11. L. J. White, V. Hutter, H. Tai, S. M. Howdle, and K. M. Shakesheff, Acta Biomater. 8, 61 (2012).

    Article  CAS  Google Scholar 

  12. D. A. Zimnyakov, V. N. Bagratashvili, S. A. Yuvchenko, I. O. Slavnetskov, A. V. Kalacheva, O. V. Ushakova, and N. S. Markova, Russ. J. Phys. Chem. B 13, 1254 (2019).

    Article  CAS  Google Scholar 

  13. D. A. Zimnyakov, E. O. Epifanov, A. V. Kalacheva, N. V. Minaev, S. A. Minaeva, V. K. Popov, T. V. Samorodina, I. O. Slavnetskov, E. V. Ushakova, and O. V. Ushakova, Sverkhkrit. Flyuidy: Teor. Prakt. 15 (1), 112 (2020).

    Google Scholar 

  14. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, U.K., 2000).

    Google Scholar 

  15. H. Vehkamaki, Classical Nucleation Theory in Multicomponent Systems (Springer, Finland, 2006).

    Google Scholar 

  16. P. Wirnau, M. Müller, L.G. MacDowell, and K. Binder, New J. Phys. 6 (7), 1 (2004).

    Article  Google Scholar 

  17. K. Binder, M. Müller, P. Wirnau, and L. G. MacDowell, Adv. Polym. Sci. 173, 1 (2005).

    Article  CAS  Google Scholar 

  18. N. S. Ramesh, in Polymeric Foams: Mechanisms and Materials, Ed. by S. T. Lee and N. S. Ramesh (CRC Press, Boca Raton, 2004), p. 73.

    Google Scholar 

  19. M. Karimi, M. Heuchel, T. Weigel, M. Schossig, D. Hoffman, and A. Lendlein, J. Supercrit. Fluids 61, 175 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education under the government contract at the Federal Research Center “Crystallography and Photonics”, Russian Academy of Sciences (improvement of the experimental unit based on a multi-window high-pressure reactor) and by the Russian Foundation for Basic Research (grant no. 18-29-06024mk) (experiments on nucleation in the polylactide–carbon dioxide system and data interpretation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zimnyakov.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimnyakov, D.A., Popov, V.K., Minaev, N.V. et al. Competition of Phase Separation Processes during Quasi-Isothermal Foaming of Polylactide in Carbon Dioxide Environment. Russ. J. Phys. Chem. B 14, 1268–1276 (2020). https://doi.org/10.1134/S1990793120080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120080084

Navigation