Skip to main content
Log in

Quasi-Adiabatic Expansion of the Polylactide Foam: Features of the Porous Matrices Formation in the Region of Transition between Sub- and Supercritical States of Plasticizing Carbon Dioxide

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract—Experimental data are presented on the dynamics of quasi-adiabatic expansion of the foam formed from carbon-dioxide-plasticized polylactide in the course of fast depressurization. It is shown that, in the range of initial pressure, which corresponds to the region of transition between the subcritical and supercritical states of plasticizing agent, a substantial increase takes place in the resulting volume of the formed porous matrices. Study of the structure of synthesized matrices at the mesoscopic level provided using low-coherence reflectometry showed a dramatic difference from synthesis conditions far from the transition region. The observed features are interpreted in the framework of a qualitative model using an equation proposed by Ross to represent the foam state. The considered model takes into account the sign of increment of the internal energy of a plasticizing and foaming agent in the course of transition between the initial and final thermodynamics states of the foamed polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. D. Harris, B.-S. Kim, and D. J. Mooney, J. Biomed. Mater. Res. 42, 396 (1998).

    Article  CAS  Google Scholar 

  2. D. J. Mooney, D. F. Baldwin, N. P. Suh, L. P. Vacanti, and R. Langer, Biomaterials 17, 1417 (1996).

    Article  CAS  Google Scholar 

  3. W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney, Biomaterials 21, 2521 (2000).

    Article  CAS  Google Scholar 

  4. D. Yu. Zalepugin, N. A. Til’kunova, V. S. Mishin, E. N. Glukhan, I. V. Chernysheva, and V. L. Korolev, Sverkhkrit. Flyuidy: Teor. Prakt., No. 1, 61 (2007).

  5. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biomaterials 27, 3413 (2006).

    Article  CAS  Google Scholar 

  6. S. E. Bogorodskii, L. I. Krotova, A. V. Mironov, and V. K. Popov, Russ. J. Phys. Chem. B 7, 916 (2013).

    Article  CAS  Google Scholar 

  7. R. Geesala, N. Bar, N. R. Dhoke, P. Basak, and A. Das, Biomaterials 77, 1 (2016).

    Article  CAS  Google Scholar 

  8. E. Kiran, J. Supercrit. Fluids 110, 126 (2016).

    Article  CAS  Google Scholar 

  9. E. di Maio and E. Kiran, J. Supercrit. Fluids 134, 157 (2018).

    Article  CAS  Google Scholar 

  10. P. S. Timashev, N. N. Vorobieva, N. V. Minaev, Yu. A. Piskun, I. V. Vasilenko, S. G. Lakeev, S. V. Kostyuk, V. V. Lunin, and V. N. Bagratashvili, Russ. J. Phys. Chem. B 10, 1195 (2016).

    Article  CAS  Google Scholar 

  11. H. Tai, M. L. Mather, D. Howard, W. Wang, L. J. White, J. A. Crowe, S. P. Morgan, A. Chandra, D. J. Williams, S. M. Howdle, and K. M. Shakesheff, Eur. Cells Mater. 14 (1), 64 (2007).

    Article  CAS  Google Scholar 

  12. E. Reverchon and S. Cardea, J. Supercrit. Fluids 40, 144 (2007).

    Article  CAS  Google Scholar 

  13. A. Salerno, M. Oliviero, E. Di Maio, S. Iannace, and P. A. Netti, J. Mater. Sci.: Mater. Med. 20, 2043 (2009).

    CAS  Google Scholar 

  14. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace, and P. A. Netti, Compos. Sci. Technol. 70, 1838 (2010).

    Article  CAS  Google Scholar 

  15. L. J. White, V. Hutter, H. Tai, S. M. Howdle, and K. M. Shakesheff, Acta Biomater. 8, 61 (2012).

    Article  CAS  Google Scholar 

  16. S. Ross, Ind. Eng. Chem. 61 (10), 48 (1969).

    Article  CAS  Google Scholar 

  17. H. Aref and D. L. Vainchtein, Phys. Fluids 12, 23 (2000).

    Article  CAS  Google Scholar 

  18. D. A. Zimnyakov, J. S. Sina, S. A. Yuvchenko, E. A. Isaeva, S. P. Chekmasov, and O. V. Ushakova, Quantum Electron. 44, 59 (2014).

    Article  Google Scholar 

  19. D. A. Zymnyakov, J. S. Sina, S. A. Yuvchenko, E. A. Isaeva, and S. P. Chekmasov, Tech. Phys. Lett. 40, 132 (2014).

    Article  CAS  Google Scholar 

  20. P. M. Johnson, A. Imhof, B. J. P. Bret, J. G. Rivas, and A. Lagendijk, Phys. Rev. E 68, 016604 (2003).

    Article  Google Scholar 

  21. M. U. Vera, A. Saint-Jalmes, and D. J. Durian, Appl. Opt. 40, 4210 (2000).

    Article  Google Scholar 

  22. S. H. Mahmood, A. Ameli, N. Hossieny, and C. B. Park, J. Chem. Thermodyn. 75, 69 (2014).

    Article  CAS  Google Scholar 

  23. https://webbook.nist.gov/chemistry/fluid/.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-06024.

D.A. Zimnyakov also acknowledges the support of the Ministry of Science and Higher Education of Russian Federation (project no. 3.7567.2017) for this study in terms of development of a LCR probing technique for synthesized samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zimnyakov.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimnyakov, D.A., Bagratashvili, V.N., Yuvchenko, S.A. et al. Quasi-Adiabatic Expansion of the Polylactide Foam: Features of the Porous Matrices Formation in the Region of Transition between Sub- and Supercritical States of Plasticizing Carbon Dioxide. Russ. J. Phys. Chem. B 13, 1254–1265 (2019). https://doi.org/10.1134/S1990793119070303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119070303

Keywords:

Navigation