Skip to main content
Log in

Role of Spectral Line Profile in Laser IR Analysis of Multicomponent Gas Mixtures

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, AND SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Topical issues of the quantitative analysis of multicomponent gas mixtures with use of laser absorption infrared technologies are addressed. It is shown that a number of questions exist regarding the detection of pollutants using these technologies, and these concern not only the position of the center of the analytical line of the detected substance but also the shape of its profile, especially in case of strong intermolecular interactions under conditions of open atmosphere. A number of examples show various aspects of the influence of the error of the spectroscopic model embedded in the solution of the inverse problem (the width and shape of the laser spectral line and gas absorption lines) on the determination of gas concentrations. The parameters of the sensitivity and selectivity of laser gas analysis that support making the optimal choice of laser radiation frequencies for studying specific gas mixtures are discussed. The importance of the high monochromaticity of laser lines, the smooth tuning of the radiation frequency over a wide spectral range, and the adequate simulation of the IR spectra of multicomponent gas mixtures are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. A. Carson and C. J. Mumford, Hazardous Chemicals Handbook (Butterwords, London, 2002).

    Google Scholar 

  2. T. M. Bachmann, Hazardous Substances and Human Health (Elsevier, Stuttgart, 2006).

    Google Scholar 

  3. A. Pałaszewska-Tkacz, S. Czerczak, and K. Konieczko, Int. J. Occup. Med. Environ. Health 30, 95 (2017).

    PubMed  Google Scholar 

  4. Sh. Sh. Nabiev and Yu. N. Ponomarev, Opt. Atmos. Okeana 11, 1274 (1998).

    Google Scholar 

  5. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. (Wiley Blackwell, Chichester, 2016).

    Google Scholar 

  6. M. Baciak, K. Warmiński, and A. Bęś, Lesné Prace Badawcze 76, 401 (2015).

    Google Scholar 

  7. L. H. Weinstein and A. W. Davison, Environ. Pollut. 125, 3 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. A. S. Rozhkov and T. A. Mikhailova, The Effects of Fluorine-Containing Emissions on Conifers (Springer, Berlin, Heidelberg, 1993).

    Book  Google Scholar 

  9. L. Georgeson, M. Maslin, and M. Poessinouw, Geo: Geogr. Environ. 4, e00036 (2017).

    Article  Google Scholar 

  10. Pollution Control Technologies, Ed. by B. Nath and G. Cholakov (EOLSS, Oxford, 2018).

    Google Scholar 

  11. Air Quality Monitoring, Assessment and Management, Ed. by N. Mazzeo (IntechOpen, London, 2011).

    Google Scholar 

  12. A. A. Aydosov, N. S. Zaurbekov, K. A. Absamatova, et al., Metall. Mining Ind., No. 4, 65 (2016).

  13. D. S. Ozerov, A. M. Nosovskii, L. N. Mukhamedieva, et al., Kosm. Tekh. Tekhnol., No. 1 (12), 104 (2016).

  14. T. F. Limero and W. T. Wallace, New Space 5 (2), 67 (2017).

    Article  Google Scholar 

  15. Breath Analysis, Ed. by G. Pennazza and M. Santonico (Academic, New York, 2018).

    Google Scholar 

  16. O. Lawal, W. M. Ahmed, T. M. E. Nijsen, et al., Metabolomics 13 (10), 110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. J. Wojtas, Z. Bielecki, T. Stacewicz, et al., Opto-Electron. Rev. 20, 26 (2012).

    Article  CAS  Google Scholar 

  18. T. Straume, D. J. Loftus, J. Li, et al., Recent Pat. Space Technol. 3, 13 (2013).

    Article  Google Scholar 

  19. J. K. Schubert and W. Miekisch, in Volatile Biomarkers. Non-Invasive Diagnosis in Physiology and Medicine, Ed. by A. Amann and D. Smith (Elsevier, Amsterdam, 2013), p. 155.

    Google Scholar 

  20. T. Straume, D. Loftus, J. Li, et al., Recent Pat. Space Technol. 3, 13 (2013).

    Article  Google Scholar 

  21. B. Buszewski, D. Grzywinski, T. Ligor, et al., Bioanalys 5, 2287 (2013).

    Article  CAS  Google Scholar 

  22. Sh. Sh. Nabiev and L. A. Palkina, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning, Physics of Earth and Space Environments, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Berlin, 2014), p. 113.

    Google Scholar 

  23. G. V. Golubkov, G. Yu. Grigoriev, Sh. Sh. Nabiev, L. A. Palkina, and M. G. Golubkov, Russ. J. Phys. Chem. B 12, 804 (2018).

    Article  CAS  Google Scholar 

  24. E. V. Stepanov, Diode Laser Spectroscopy and Analysis of Biomarker Molecules (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  25. Sh. Sh. Nabiev, Remote Laser-Optical Methods for Detecting and Identifying Components of Rocket Fuels (Kurchatov. Inst., Moscow, 2010) [in Russian].

    Google Scholar 

  26. O. I. Orlov, L. N. Mukhamedieva, G. Yu. Grigor’ev, et al., Aviakosm. Ekol. Med. 52 (7), 182 (2018).

    Google Scholar 

  27. Sh. Sh. Nabiev and L. A. Palkina, At. Energy 124, 349 (2018).

    Article  CAS  Google Scholar 

  28. B. Tuzson, J. Jagerska, H. Looser, et al., Anal. Chem. 89, 6377 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. I. Bayrakli, J. Biomed. Opt. 22, 040901 (2017).

    Article  Google Scholar 

  30. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier Science, Amsterdam, 2008).

    Google Scholar 

  31. Sh. Sh. Nabiev, S. V. Ivanov, Ya. Ya. Ponurovskii, and M. A. Sukhanova, KI Preprint No. IAE-6686/12 (Kurchatov. Inst., Moscow, 2011).

    Google Scholar 

  32. A. I. Nadezhdinskii, Spectrochim. Acta, Part A 52, 1041 (1996).

    Article  Google Scholar 

  33. Sh. Sh. Nabiev, S. V. Ivanov, and Ya. Ya. Ponurovskii, Atmos. Ocean. Opt. 25, 19 (2012).

    Article  CAS  Google Scholar 

  34. K. Esteki, A. Predoi-Cross, C. Povey, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 309 (2017).

    Article  CAS  Google Scholar 

  35. S. V. Ivanov, V. M. Semenov, Sh. Sh. Nabiev, and Ya. Ya. Ponurovskii, Appl. Phys. B 117, 423 (2014).

    Article  CAS  Google Scholar 

  36. P. Bernath, Spectra of Atoms and Molecules (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  37. S. G. Rautian and I. I. Sobel’man, Sov. Phys. Usp. 9, 701 (1966).

    Article  Google Scholar 

  38. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Pergamon, Oxford, 1972; Mir, Moscow, 1977).

  39. A. I. Nadezhdinskii, Ya. Ya. Ponurovskii, and M. V. Spiridonov, Quantum Electron. 29, 916 (1999).

    Article  CAS  Google Scholar 

  40. Sh. Sh. Nabiev, S. V. Ivanov, and Ya. Ya. Ponurovskii, Atmos. Ocean. Opt. 25, 118 (2012).

    Article  CAS  Google Scholar 

  41. S. G. Rautian, Opt. Spectrosc. 90, 30 (2001).

    Article  CAS  Google Scholar 

  42. R. Ciurylo, A. S. Pine, and J. Szudy, J. Quant. Spectrosc. Radiat. Transfer 68, 257 (2001).

    Article  CAS  Google Scholar 

  43. N. H. Ngo, D. Lisak, H. Tran, and J-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 129, 89 (2013).

    Article  CAS  Google Scholar 

  44. N. H. Ngo, D. Lisak, H. Tran, and J-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 134, 105 (2014).

    Article  CAS  Google Scholar 

  45. I. Gordon, L. Rothman, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017).

    Article  CAS  Google Scholar 

  46. R. H. Dicke, Phys. Rev. 89, 472 (1953).

    Article  CAS  Google Scholar 

  47. L. Galatry, Phys. Rev. 122, 1218 (1961).

    Article  CAS  Google Scholar 

  48. Ya. Ya. Ponurovskii, S. V. Ivanov, Sh. Sh. Nabiev, and V. M. Semenov, Bull. Lebedev Phys. Inst. 41, 22 (2014).

    Article  Google Scholar 

  49. C. Boone, K. A. Walker, and P. F. Bernath, J. Quant. Spectrosc. Radiat. Transfer 105, 525 (2007).

    Article  CAS  Google Scholar 

  50. R. P. Berman, J. Quant. Spectrosc. Radiat. Transfer 12, 1331 (1972).

    Article  CAS  Google Scholar 

  51. J. Ward, J. Cooper, and E. W. Smith, J. Quant. Spectrosc. Radiat. Transfer 14, 555 (1974).

    Article  Google Scholar 

  52. D. Lisak, D. K. Havey, and J. T. Hodges, Phys. Rev. A 79, 052507 (2009).

    Article  CAS  Google Scholar 

  53. R. Ciurylo and J. Szudy, J. Quant. Spectrosc. Radiat. Transfer 57 (1), 41 (1997).

    Article  Google Scholar 

  54. J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437 (1982).

    Article  Google Scholar 

  55. M. Kuntz, J. Quant. Spectrosc. Radiat. Transfer 51, 819 (1997).

    Article  Google Scholar 

  56. W. Ruyten, J. Quant. Spectrosc. Radiat. Transfer 86, 231 (2004).

    Article  CAS  Google Scholar 

  57. J. Wang, P. Ehlers, I. Silander, et al., J. Opt. Soc. Am. B 29, 2971 (2012).

    Article  CAS  Google Scholar 

  58. N. H. Ngo, H. Tran, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 129, 199 (2013).

    Article  CAS  Google Scholar 

  59. C. Boone, K. Walker, and P. Bernath, J. Quant. Spectrosc. Radiat. Transfer 112, 980 (2011).

    Article  CAS  Google Scholar 

  60. P. W. Rosenkranz, IEEE Trans. Antenn. Propag. 23, 498 (1975).

    Article  Google Scholar 

  61. A. Pereslavtseva and Ya. Ponurovskii, in Proceedings of the 9th International Conference on Tunable Diode Laser Spectroscopy TDLS-2013 (Moscow, 2013), p. 58.

  62. A. Nadezhdinskii, A. Pereslavtseva, Ya. Ponurovskii, and V. Semenov, in Proceedings of the 9th International Conference on Tunable Diode Laser Spectroscopy TDLS-2013 (Moscow, 2013), p. 56.

  63. Sh. Sh. Nabiev, S. V. Ivanov, Ya. Ya. Ponurovskii, and V. M. Semenov, Perspekt. Mater., No. 14, 134 (2013).

  64. Ya. Ya. Ponurovskii, Cand. Sci. (Phys. Math.) Dissertation (Center Nat. Sci. Res., Prokhorov Inst. Gen. Phys. RAS, Moscow, 2000).

  65. J.-P. Hermier, A. Bramati, A. Khoury, et al., J. Opt. Soc. Am. B 16, 2140 (1999).

    Article  CAS  Google Scholar 

  66. F. K. Tittel and R. Lewicki, in Semiconductor Lasers: Fundamentals and Applications, Ed. by A. Baranov and E. Tourni (Woodhead, Cambridge, 2013), p. 579.

    Google Scholar 

  67. S. Bartalini, S. Borri, P. Cancio, et al., Phys. Rev. Lett. 104, 083904 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. S. V. Ivanov, V. I. Novoderezhkin, V. Ya. Panchenko, et al., Opt. Eng. 33, 3202 (1994).

    Article  CAS  Google Scholar 

  69. Yu. S. Makushkin, A. A. Mitsel’, and G. S. Khmel’nitskii, Zh. Prikl. Spektrosk. 35, 785 (1981).

    CAS  Google Scholar 

  70. S. D. Frans and J. M. Harris, Anal. Chem. 57, 2680 (1985).

    Article  CAS  Google Scholar 

  71. E. V. Stepanov, Opt. Atmos. Okeana 15, 838 (2002).

    Google Scholar 

  72. P. L. Meyer and M. W. Sigrist, Rev. Sci. Instrum. 61, 1779 (1990).

    Article  CAS  Google Scholar 

  73. G. Bergmann, B. von Oepen, and P. Zinn, Anal. Chem. 59, 2522 (1987).

    Article  CAS  Google Scholar 

  74. H. Kaiser, Fresenius Z. Anal. Chem. 260, 252 (1972).

    Article  CAS  Google Scholar 

  75. A. Junker and G. Bergmann, Fresenius Z. Anal. Chem. 272, 267 (1974).

    Article  CAS  Google Scholar 

  76. E. V. Stepanov, in Laser Spectral Analysis of Biomarker Molecules for Biomedical Diagnostics, Tr. IOFAN, Ed. by E. V. Stepanov (Nauka, Moscow, 2005), p. 107 [in Russian].

  77. S. A. Trushin, Phys. Chem. Chem. Phys. 96, 319 (1992).

    CAS  Google Scholar 

  78. Gas Lasers, Ed. by M. Endo and R. F. Walter (CRC, New York, 2006).

    Google Scholar 

  79. G. Guelachvili, D. Villeneuve, R. Farrenq, et al., J. Mol. Spectrosc. 98, 64 (1983).

    Article  CAS  Google Scholar 

  80. A. Ionin, A. Kurnosov, A. Napartovich, and L. Seleznev, Laser Phys. 20, 144 (2010).

    Article  CAS  Google Scholar 

  81. U. K. Sengupta, P. K. Das, and K. N. Rao, J. Mol. Spectrosc. 74, 322 (1979).

    Article  CAS  Google Scholar 

  82. V. V. Apollonov, High-Conductivity Channels in Space (Springer, Cham, Switzerland, 2018).

    Book  Google Scholar 

  83. A. Ionin, D. Sinitsyn, and A. Suchkov, Proc. SPIE 2206, 287 (1994).

    Article  CAS  Google Scholar 

  84. C. Rolland, J. Reid, and B. K. Garside, Appl. Phys. Lett. 44, 380 (1984).

    Article  CAS  Google Scholar 

  85. A. Chakrabarti and J. Reid, Rev. Sci. Instrum. 58, 1413 (1987).

    Article  CAS  Google Scholar 

  86. P. de Bievre, M. Gallet, N. Holden, and I. Barnes, Phys. Chem. Ref. Data 13, 809 (1984).

    Article  CAS  Google Scholar 

  87. F. X. Kneizys, E. P. Shettle, L. W. Abreu, et al., User’s Guide on LOWTRAN-7, AFGL-TR-88-0177, Environmental Research Paper, No. 1010 (1988).

  88. F. Thibault, V. Menoux, R. LeDoucen, et al., Appl. Opt. 36, 563 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. O. Buzykin, A. Ionin, S. Ivanov, et al., Laser Part. Beams 18, 697 (2001).

    Article  Google Scholar 

  90. S. V. Ivanov, A. A. Moimi, A. A. Kotkov, et al., Khim. Fiz. 23 (8), 58 (2004).

    CAS  Google Scholar 

  91. S. V. Ivanov, V. Ya. Panchenko, and T. B. Razumikhina, Opt. Atmos. Okeana 6, 1023 (1993).

    Google Scholar 

  92. L. S. Rothman, Appl. Opt. 20, 791 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. L. S. Rothman, A. Goldman, J. R. Gillis, et al., Appl. Opt. 20, 1323 (1981).

    Article  CAS  PubMed  Google Scholar 

  94. L. S. Rothman, R. R. Gamache, and A. Goldman, Appl. Opt. 26 (19), 40 (1987).

    Article  Google Scholar 

  95. S. V. Ivanov, J. Quant. Spectrosc. Radiat. Transfer 177, 269 (2016).

    Article  CAS  Google Scholar 

  96. A. I. Parkhomenko and A. M. Shalagin, J. Exp. Theor. Phys. 93, 723 (2001).

    Article  CAS  Google Scholar 

  97. R. M. Herman, Int. J. Spectrosc. 2010, 306392 (2010).

    Article  CAS  Google Scholar 

  98. V. I. Kozintsev, G. Iden, M. L. Belov, et al., Vestn. MGTU Baumana, Ser. Priborostr., No. 4, 3 (2009).

  99. L. N. Eremenko, M. L. Belov, A. Yu. Busargin, and V. A. Gorodnichev, Modern Problems of Optical Technology, Ed. by N. V. Baryshnikov (MGTU im. N. E. Baumana, Moscow, 2013), p. 207 [in Russian].

  100. G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24 (6), 3 (2005).

    Google Scholar 

  101. G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The contribution of S.V. Ivanov in the part of infrared laser gas analyzers and absorption line shapes was supported by the Ministry of Science and Higher Education of the Russian Federation within State Assignment for Federal Research Center Crystallography and Photonics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Nabiev.

Ethics declarations

This study was carried out within State Assignment of the Ministry of Science and Higher Education of the Russian Federation (topic 0082-2019-0017, registration no. AAAA-A19-119010990034-5).

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabiev, S.S., Ivanov, S.V., Lagutin, A.S. et al. Role of Spectral Line Profile in Laser IR Analysis of Multicomponent Gas Mixtures. Russ. J. Phys. Chem. B 13, 727–738 (2019). https://doi.org/10.1134/S1990793119050191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119050191

Keywords:

Navigation