Skip to main content
Log in

Studying the Mechanism of the Low-Temperature Oxidation of Microsized Aluminum Powder by Water

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The mechanism of the oxidation of disperse aluminum (powder of ASD-4 grade) by liquid water was studied including the use of different process activation methods (thermal, ultrasonic, and chemical in the presence of small CaO amounts). For this purpose, the complex study of the aluminum oxidation process was performed at its different stages by analyzing the kinetic dependences of the hydrogen formation rate and the reaction medium pH change and using the instrumental methods of scanning electron microscopy and X-ray diffraction analysis. It has been demonstrated that the shape of kinetic hydrogen release curves, the oxidation process completeness, and the structure of formed hydroxides are interrelated. An essential role is played by the mass transfer of formed solid oxidation products from the surface of particles to the crystallization nuclei of aluminum hydroxide and the localization of crystallization areas. This work is topical because of the broad interest in the use of metallic aluminum as an energy-accumulating substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Larichev (L. M. Nikolaevich), in Metal Nano-powders: Production, Characterization, and Energetic Applications, Ed. by A. Gromov and U. Teipel (Wiley-VCH, Weinheim, 2014), p. 163. https://doi.org/10.1002/9783527680696.ch8

  2. H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, et al., Renewable Sustainable Energy Rev. 13, 845 (2009). https://doi.org/10.1016/j.rser.2008.02.009

    Article  CAS  Google Scholar 

  3. E. I. Shkolnikov, A. Z. Zhuk, and M. S. Vlaskin, Renewable Sustainable Energy Rev. 15, 4611 (2009). https://doi.org/10.1016/j.rser.2011.07.091

    Article  CAS  Google Scholar 

  4. M. N. Larichev, O. O. Laricheva, I. O. Leipunskii, et al., Izv. Akad. Nauk, Energ., No. 5, 125 (2007).

    Google Scholar 

  5. J. M. Bergthorson, Y. Yavor, J. Palecka, et al., Appl. Energy 186, 13 (2017). https://doi.org/10.1016/j.apenergy.2016.10.033

    Article  CAS  Google Scholar 

  6. A. Z. Zhuk, M. S. Vlaskin, A. V. Grigorenko, et al., J. Ceram. Proc. Res. 17, 910 (2016).

    Google Scholar 

  7. S. A. Kislenko, M. S. Vlaskin, and A. Z. Zhuk, Solid State Ionics 293, 1 (2016).

    Article  CAS  Google Scholar 

  8. M. N. Larichev, N. S. Shaitura, and O. O. Laricheva, Russ. J. Phys. Chem. B 2, 757 (2008). https://doi.org/10.1134/S1990793108050175

    Article  Google Scholar 

  9. M. N. Larichev, N. S. Shaitura, V. N. Kolokol'nikov, et al., Izv. Akad. Nauk, Energet, No. 2, 85 (2010).

    Google Scholar 

  10. N. S. Shaytura, M. N. Laritchev, O. O. Laritcheva, et al., Curr. Appl. Phys. 10 (Suppl. 2), S66 (2010). https://doi.org/10.1016/j.cap.2009.11.044

    Article  Google Scholar 

  11. M. N. Larichev, N. S. Shaitura, V. N. Kolokol'nikov, et al., Perspekt. Mater., No. 9, 289 (2010).

    Google Scholar 

  12. M. N. Larichev, O. O. Laricheva, N. S. Shaitura, et al., Izv. Akad. Nauk, Energ., No. 3, 66 (2012).

    Google Scholar 

  13. A. A. Gromov, A. P. Il'in, U. Foerter-Barth, et al., Combust., Explos., Shock Waves 42, 177 (2006).

    Article  Google Scholar 

  14. M. N. Larichev, O. O. Laricheva, I. O. Leipunskii, et al., Khim. Fiz. 25 (10), 72 (2006).

    CAS  Google Scholar 

  15. Z. Y. Deng, J. M. F. Ferreira, Y. Tanaka, and J. Ye, J. Am. Ceram. Soc. 90, 1521 (2007). https://doi.org/10.1111/j.1551-2916.2007.01546.x

    Article  CAS  Google Scholar 

  16. A. Fernandez, J. C. Sanchez-Lopez, A. Caballero, et al., J. Microsc. 191, 212 (1998). https://doi.org/10.1046/j.1365-2818.1998.00355.x

    Article  CAS  PubMed  Google Scholar 

  17. S. S. Razavi-Tousi and J. A. Szpunar, Electrochim. Acta 127, 95 (2014). https://doi.org/10.1016/j.electacta.2014.02.024

    Article  CAS  Google Scholar 

  18. A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, et al., Nanotecnology 27, 205603 (2016). https://doi.org/10.1088/0957-4484/2720/205603

    Article  CAS  Google Scholar 

  19. S. Kanehira, S. Kanamori, K. Nagashima, et al., J. Asian Ceram. Soc. 1, 296 (2013). https://doi.org/10.1016/jjascer.2013.08.001

    Article  Google Scholar 

  20. B. C. Bunker, G. C. Nelson, K. R. Zavadil, et al., J. Phys. Chem. B 18, 4705 (2002). https://doi.org/10.1021/jp013246e

    Article  CAS  Google Scholar 

  21. E. I. Shkolnikov, N. S. Shaitura, and M. S. Vlaskin, J. Supercrit. Fluids 73, 10 (2013). https://doi.org/10.1016/j.supflu.2012.10.011

    Article  CAS  Google Scholar 

  22. P.A. Rebinder and E. D. Shchukin, Sov. Phys. Usp. 15, 533 (1972). https://doi.org/10.3367/UFNr.0108.197209a.0003

    Article  Google Scholar 

  23. J. Zang, M. Klasky, and B. C. Letellier, J. Nucl. Mater. 384, 175 (2009). https://doi.org/10.1016/j.jnucmat.2008.11.009

    Article  CAS  Google Scholar 

  24. W. H. Song, J. J. Du, Y. L. Xu, et al., J. Nucl. Mater. 246, 139 (1997). https://doi.org/10.1016/S0022-3115(97)00146-3

    Article  CAS  Google Scholar 

  25. I. B. Ulanovskiy, Hydrogen Diffusion and Porosity Formation in Aluminium (MISIS, Moscow, 2015) [in Russian].

    Google Scholar 

  26. I. L. Khodakovskii, L. V. Katorcha, and N. S. Kuyunko, Geokhimiya, No. 11, 1606 (1980).

    Google Scholar 

  27. X. Feng, Z. Baojie, and L. Chery, J. Environ. Sci., No. 20, 907 (2008). https://doi.org/10.1016/S1001-0742(08)62185-3

    Google Scholar 

  28. P. F. Rumyantsev, V. S. Khotimchenko, and V. Sh. Niku-shchenko, Calcium Aluminates Hydration (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  29. R. A. Lidin, et al., Chemical Properties of Inorganic Substances, 3rd ed. (Khimiya, Moscow, 2000) [in Russian].

    Google Scholar 

  30. M. D. Luque de Castro and F. Priego-Capete, Ultrason. Sonochem. 14, 717 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. V. S. Nalajala and V. S. Moholkar, Ultrason. Sonochem. 18, 345 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. M. A. Margulis, Ultrasonics 23, 157 (1985). https://doi.org/10.1016/0041-624X(85)90024-1

    Article  CAS  Google Scholar 

  33. B. Kaspzyk-Hordern, Adv. Colloid Interface Sci. 110, 19 (2004). https://doi.org/10.1016/j.cis.2004.02002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Shaitura.

Additional information

Russian Text © The Author(s), 2019, published in Khimicheskaya Fizika, 2019, Vol. 38, No. 3, pp. 9–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaitura, N.S., Laricheva, O.O. & Larichev, M.N. Studying the Mechanism of the Low-Temperature Oxidation of Microsized Aluminum Powder by Water. Russ. J. Phys. Chem. B 13, 231–244 (2019). https://doi.org/10.1134/S1990793119020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119020088

Keywords

Navigation