Skip to main content
Log in

Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Processes of nonisothermal oxidation, nitridation, and ageing of aluminum powders with different particle sizes (nano-sized powder, ASD-1 powder, and PAP-2 powder) are considered. Application of non-oxide coatings onto particles of aluminum nanopowders reduces their thermal stability. Owing to scale-shaped particles, the PAP-2 powder after long-time storage preserves high activity of oxidation and nitridation, which is commensurable with that of the aluminum nanopowder. The activity of the coarse ASD-1 powder consisting of spherical particles in terms of oxidation and nitridation is low and only slightly changes during ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Il’in, A. A. Gromov, and G. V. Yablunovskii, “Reactivity of aluminum powders,” Combust., Expl., Shock Waves, 37, No. 4, 418–422 (2001).

    Google Scholar 

  2. N. Eisenreich, H. Fietzek, M. M. Juez-Lorenzo, et al., “On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale,” Propell., Expl., Pyrotech., 29, No. 3, 137–145 (2004).

    Google Scholar 

  3. D. E. G. Jones, R. Turcotte, R. C. Fouchard, et al., “Hazard characterization of aluminum nanopowder compositions,” Propell., Expl., Pyrotech., 28, No. 3, 120–131 (2003).

    Google Scholar 

  4. A. Maranda, A. Papilski, and D. Galezowski, “Investigation on detonation and thermochemical parameters of aluminized ANFO,” Energ. Mater., 21, 1–13 (2003).

    Google Scholar 

  5. Yu. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, et al., “Productions of ultra-fine powders and their use in high energetic compositions,” Propell., Expl., Pyrotech., 28, No. 6, 319–333 (2003).

    Google Scholar 

  6. A. P. Il’in and A. A. Gromov, Combustion of Aluminum and Boron in a Superthin State [in Russian], Izd. Tomsk. Univ., Tomsk (2002).

    Google Scholar 

  7. A. I. Rat’ko, V. E. Romanenkov, E. V. Bolotnikova, and Zh. V. Krupen’kova, “Hydrothermal synthesis of a porous cermet material Al2O3/Al. I. Laws of oxidation of powdered aluminum and formation of the structure of the porous composite Al(OH)3/Al,” Kinet. Katal., 45, No. 1, 154–161 (2004).

    Google Scholar 

  8. J. C. Sanchez-Lopez, A. Fernandez, C. F. Conde, et al., “The melting behavior of passivated nanocrystalline aluminum,” Nanostruct. Mater., 7, No. 8, 813–822 (1996).

    Google Scholar 

  9. A. N. Zhigach, O. I. Leipunskii, M. L. Kuskov, et al., “Synthesis of coatings on the surface of ultrafine aluminum particles,” Khim. Fiz., 21, No. 4, 72–78 (2002).

    Google Scholar 

  10. A. L. Ramaswamy and P. Kaste, “Combustion modifiers for energetic materials,” in: Energetic Materials: Reactions of Propellants, Explosives and Pyrotechnics, Proc. 34th Int. Annual Conf. of ICT (June 24–27, Karlsruhe, 2003), Karlsruhe (2003), pp. (21-1)–(21-15).

  11. Y. S. Kwon, A. A. Gromov, A. P. Ilyin, and G. H. Rim, “Passivation process for superfine aluminum powders obtained by electrical explosion of wires,” Appl. Surface Sci., 211, 57–67 (2003).

    Article  Google Scholar 

  12. Y. S. Kwon, Y. H. Jung, N. A. Yavorovsky, et al., “Ultrafine metal powders by wires electric explosion method,” Scripta Mater., 44, 2247–2251 (2001).

    Google Scholar 

  13. A. P. Il’in, Yu. A. Krasnyatov, and D. B. Tikhonov, “Method for obtaining powders,” Patent of the Russian Federation No. 2139776.

  14. B. Leo and A. W. Searcy, “The gaseous species of the Al-Al2O3 system,” J. Amer. Chem. Soc., 73, 5308–5314 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 42, No. 2, pp. 61–69, March–April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromov, A.A., Il’in, A.P., Foerter-Barth, U. et al. Effect of the passivating coating type, particle size, and storage time on oxidation and nitridation of aluminum powders. Combust Explos Shock Waves 42, 177–184 (2006). https://doi.org/10.1007/s10573-006-0036-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-006-0036-4

Key words

Navigation