Skip to main content
Log in

Possible Mechanism of Thermal Reduction of Graphite Oxide

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A mechanism for the thermal reduction of graphite oxide is proposed. The process begins with the homolysis of the C–C bond in the basal plane of graphite oxide with subsequent reactions of isomerization of the formed radicals. The formation of both CO and a significant amount of CO2 was explained to occur via the cleavage of 1,3-dioxetane, which forms by the disproportionation and recombination of free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Brodie, Philos. Trans. R. Soc. London 149, 249 (1859).

    Article  Google Scholar 

  2. S. Park, S. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    Article  PubMed  Google Scholar 

  3. A. E. Chichibabin, Basic Principles of Organic Chemistry (Gos. Izdat. Khim. Liter., Moscow, 1957), Vol. 2 [in Russian].

    Google Scholar 

  4. S. Mao, H. Pu, and J. Chen, RSC Adv. 2, 2643 (2012).

    Article  CAS  Google Scholar 

  5. N. Ghadery and M. Peressi, J. Phys. Chem. C 114, 21625 (2010).

    Article  CAS  Google Scholar 

  6. J. T. Paci, T. Belytschko, and G. C. Schatz, J. Phys. Chem. C 111, 18099 (2007).

    Article  CAS  Google Scholar 

  7. T. Szabo, J. Berkesi, P. Forgo, et al., Chem. Mater. 18, 2740 (2006).

    Article  CAS  Google Scholar 

  8. D. Yu. Gamburg, V. P. Semenov, and N. F. Dubovkin, Hydrogen. Properties, Production, Storage, Transportation, Application (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  9. H. K. Jeong, H. J. Noh, J. Y. Kim, et al., Europhys. Lett. 82, 67004 (2008).

    Article  CAS  Google Scholar 

  10. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. W. F. Chen and L. F. Yan, Nanoscale 2, 559 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. M. Cheng, R. Yang, and L. Zhang, Carbon 50, 2581 (2012).

    Article  CAS  Google Scholar 

  13. Y. W. Zhu, S. Murali, M. D. Stoller, et al., Carbon 48, 2118 (2010).

    Article  CAS  Google Scholar 

  14. M. V. Gudkov and V. P. Melnikov, Nanosystems 7, 244 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gridnev.

Additional information

Original Russian Text © A.A. Gridnev, M.V. Gudkov, L.S. Bekhli, V.P. Mel’nikov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 12, pp. 33–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gridnev, A.A., Gudkov, M.V., Bekhli, L.S. et al. Possible Mechanism of Thermal Reduction of Graphite Oxide. Russ. J. Phys. Chem. B 12, 1008–1016 (2018). https://doi.org/10.1134/S1990793118060155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118060155

Keywords

Navigation