Skip to main content
Log in

A kinetic model of the reaction of dispersed aluminum with water under exposure to hydrocavitation and stabilization of the final product

  • Chemical Physics of Ecological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2017

This article has been updated

Abstract

The reaction of dispersed aluminum with water under the exposure of an A-IX-2 aluminum-containing explosive compound to hydrocavitation has been discussed. A kinetic model of the process has been developed; the chemical reaction rate constant has been determined under experimental conditions. It has been shown that the reaction occurs in an autocatalytic mode and can lead to the complete conversion of aluminum to aluminum hydroxide. A method to stabilize dispersed aluminum during the hydrocavitational extraction of a conversion explosive by using a phosphate buffer has been developed. Experiments have shown that the phosphate buffer has a stabilizing effect and leads to an improvement of the characteristics of the resulting industrial explosive composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 27 February 2018

    Add section:

  • 27 February 2018

    Add section:

References

  1. B. V. Matseevich, V. P. Glinskii, and E. M. Sviridov, in Integrated Disposal of Conventional Types of Ammunition, Proceedings of the International Conference (RARAN, Krasnoarmeisk, 2007), p. 60.

    Google Scholar 

  2. Powders, Solid Fuels and Explosives (Min-vo Oborony SSSR, Moscow, 2005), p. 202 [in Russian].

  3. D. I. Dement’eva, Introduction to Technology of Energy Saturated Materials (Altaisk. Gos. Tekh. Univ. im. I. I. Polzunova, Biisk, 2009) [in Russian].

    Google Scholar 

  4. GOST (State Standard) No. 5494-95, Aluminium Powder, Technical Conditions, 5th ed. (Mezhgos. Sovet Standartiz., Metrol. Sertifikats., Minsk, 2000).

  5. Technical Conditions No. 075 118 19-108-97 (KNIIM, Krasnoarmeisk, 1997).

  6. V. P. Glinskii, N. K. Shalygin, O. F. Mardasov, et al., in Actual Problems of Utilization of Missiles and Ammunition, Proceedings of the 8th International Conference (RARAN, Krasnoarmeisk, 2011), p. 96.

    Google Scholar 

  7. K. M. Kolmakov, V. K. Kolmakov, and G. V. Kozlov, in Proceedings of the International Symposium on Reliability and Quality (Penz. Gos. Univ., Pensa, 2010), Vol. 2, p. 286.

    Google Scholar 

  8. Yu. P. Perelygin, Vodoochistka, No. 7, 29 (2014).

    Google Scholar 

  9. V. N. Tikhonov, Analytical Chemistry of Aluminum, Ser. Analytical Chemistry of Elements (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. B. Delmon, Introduction à la cinétique hétérogène (Technip, Paris, 1969).

    Google Scholar 

  11. R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances, The Handbook (Drofa, Moscow, 2006) [in Russian].

    Google Scholar 

  12. V. A. Rabinovich and Z. Ya. Khavin, Concise Chemical Handbook (Khimiya, Leningrad, 1991) [in Russian].

    Google Scholar 

  13. Yu. Yu. Lur’e, Handbook of Analytical Chemistry, 6th ed. (Khimiya, Moscow, 1989).

    Google Scholar 

  14. V. M. Talanov and G. M. Zhitnyi, Ion Equilibria in Aqueous Solutions (Akad. Estestvoznaniya, Moscow, 2007) [in Russian].

    Google Scholar 

  15. Technical Conditions No. 5729-090-00284530-00 (Plast-Rifei, Moscow, 2000).

  16. Technical Conditions No. 5729-091-00284530-00 (Plast-Rifei, Moscow, 2000).

  17. Chemist's Handbook, Ed. by B. P. Nikol’skii, 3rd ed. (Khimiya, Moscow, 1971), Vol. 1 [in Russian].

  18. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth, Oxford, 1997), Vol. 1.

    Google Scholar 

  19. H. C. Grigoryan, E. F. Akimova, and T. A. Vagramyan, Phosphatization, The School-Book (Globus, Moscow, 2008) [in Russian].

    Google Scholar 

  20. I. I. Khain, Theory and Practice of Metal Phosphatization (Khimiya, Leningrad, 1973) [in Russian].

    Google Scholar 

  21. N. I. Koshkin and M. G. Shirkevich, Handbook on Elementary Physics, 9th ed. (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  22. GOST (State Standard) No. 4545-88 (Izd-vo Standartov, Moscow, 1988).

  23. GOST (State Standard) No. R 22.2.07-94 (Izd-vo Standartov, Moscow, 2001).

  24. GOST (State Standard) No. 9.707-81 (Izd-vo Standartov, Moscow, 1990).

  25. K. M. Kolmakov, A. L. Romanovskii, and G. V. Kozlov, RF Patent No. 2528726, Byull. Izobret. No. 26 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Kolmakov.

Additional information

Original Russian Text © K.M. Kolmakov, A.E. Rozen, A.V. Roshchin, E.O. Panin, A.M. Podval’nyi, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 8, pp. 68–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolmakov, K.M., Rozen, A.E., Roshchin, A.V. et al. A kinetic model of the reaction of dispersed aluminum with water under exposure to hydrocavitation and stabilization of the final product. Russ. J. Phys. Chem. B 11, 684–690 (2017). https://doi.org/10.1134/S1990793117040170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117040170

Keywords

Navigation