Skip to main content
Log in

Propagation of detonation in fuel–air mixtures in flat channels

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The wide scatter of the values of the measured detonation cell size in fuel + air mixtures restricts the applicability of this parameter in the estimation of the geometric limits of detonation propagation, including in rectangular channels whose height is much larger than their width. The critical channel height for the propagation of detonation has been experimentally determined for hydrogen + air, propane + air, and ethylene + air mixtures. In order to reveal the specific features of the propagation and decay of detonation in a narrow channel, numerical simulation has been carried out for a hydrogen + air mixture with account taken of the cellular structure of the detonation wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Borisov, B. E. Gel’fand, S. A. Loban’, A. E. Mailkov, and S. V. Khomik, Khim. Fiz., No. 6, 848 (1982).

    Google Scholar 

  2. A. A. Vasil’ev, Fiz. Goreniya Vzryva 23 (3), 121 (1987).

  3. V. V. Mitrofanov, Detonation of Homogeneous and Heterogeneous Systems (Inst. Gidrodinam. im. M. A. Lavrent’eva, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  4. G. Ciccarelli, T. Ginsberg, J. Boccio, et al., Combust. Flame 99 (2), 12 (1994).

    Article  Google Scholar 

  5. G. Ciccarelli, T. Ginsberg, J. Boccio, et al., BNL Report No. NUREG/CR-6391, BNL-NUREG-52482 (1997).

    Google Scholar 

  6. C. M. Guirao, R. Knystautas, J. Lee, W. Benedick, et al., in Proceedings of the 19th International Symposium on Combustion (The Combust. Inst., Pittsburgh, 1982), p. 583.

    Google Scholar 

  7. S. R. Tieszen, M. P. Sherman, W. B. Benedick, et al., Prog. Astronaut. Aeronaut. 106, 205 (1986).

    CAS  Google Scholar 

  8. R. Knystautas, C. Guirao, J. H. S. Lee, et al., Prog. Astronaut. Aeronaut. 94, 23 (1984).

    CAS  Google Scholar 

  9. I. O. Moen, J. W. Funk, S. A. Ward, et al., Prog. Astronaut. Aeronaut. 94, 55 (1984).

    CAS  Google Scholar 

  10. A. I. Gavrikov, A. A. Efimenko, and S. B. Dorofeev, Combust. Flame 120, 19 (2000).

    Article  CAS  Google Scholar 

  11. A. A. Konnov, http://homepagesvubacbe/~akonnov/. Cited 2000.

  12. http://maemailucsdedu/~combustion/cermech/. Cited 2003.

  13. A. A. Vasil’ev, Fiz. Goreniya Vzryva 18 (2), 132 (1982).

  14. M. Monvar, Y. Yamamoto, K. Ishii, et al., J. Thermal Sci. 16, 283 (2007).

    Article  CAS  Google Scholar 

  15. M. Weber, H. Olivier, and H. Grönig, in Proceedings of the 23th ISSW (2001), CD-ROM, Paper 1312, p. 173.

    Google Scholar 

  16. D. W. Stamps and S. R. Tieszen, Combust. Flame 83, 353 (1991).

    Article  CAS  Google Scholar 

  17. A. A. Borisov, S. V. Khomik, V. N. Mikhalkin, et al., Prog. Astronaut. Aeronaut. 133, 142 (1989).

    Google Scholar 

  18. N. V. Bannikov and A. A. Vasil’ev, Fiz. Goreniya Vzryva 19, 164 (1993).

    Google Scholar 

  19. A. A. Borisov and S. A. Loban’, Fiz. Goreniya Vzryva 13, 729 (1977).

    CAS  Google Scholar 

  20. S. B. Murray and J. H. Lee, Prog. Astronaut. Aeronaut. 94, 80 (1984).

    CAS  Google Scholar 

  21. D. Pawel, H. Vasatko, and H. Gg. Wagner, AFOSR 69-2095 TR (1969), p. 60.

    Google Scholar 

  22. A. Camargo, H. D. Ng, J. Chao, et al., Shock Waves 20, 499 (2010).

    Article  Google Scholar 

  23. Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 10, 542 (1940).

    Google Scholar 

  24. J. A. Fay, Phys. Fluids 2, 283 (1959).

    Article  Google Scholar 

  25. A. V. Zibarov, D. M. Babaev, and A. M. Shadskii, SAPR Grafika, No. 10, 44 (2000).

  26. S. P. Medvedev, S. P. Khomik, and B. E. Gel’fand, Russ. J. Phys. Chem. B 3, 963 (2009).

  27. O. G. Maksimova, S. P. Medvedev, S. V. Khomik, et al., in Combustion and Explosion, Ed. by S. M. Frolov (Torus, Moscow, 2012), No. 5, p. 125 [in Russian].

  28. S. V. Khomik, S. P. Medvedev, B. Veyssiere, H. Olivier, O. G. Maximova, and M. V. Silnikov, Russ. Chem. Bull. 63, 1666 (2014).

    Article  CAS  Google Scholar 

  29. Gas Equation Software Package, Vers. 0.79 (ChrisMorley, 2005). http://wwwgaseqcouk/

  30. V. A. Gal’burt, M. F. Ivanov, V. N. Mineev, et al., Mat. Model. 14 (1), 73 (2002).

    Google Scholar 

  31. H. D. Ng, J. Chao, and J. H. S. Lee, in Proceedings of the 20th ICDERS (McGill Univ., Montreal, Canada, 2005), CD-ROM, Paper 184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Khomik.

Additional information

Original Russian Text © S.V. Khomik, S.P. Medvedev, A.A. Borisov, V.N. Mikhalkin, O.G. Maksimova, V.A. Petukhov, A.Yu. Dolgoborodov, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 4, pp. 48–56.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomik, S.V., Medvedev, S.P., Borisov, A.A. et al. Propagation of detonation in fuel–air mixtures in flat channels. Russ. J. Phys. Chem. B 10, 298–305 (2016). https://doi.org/10.1134/S1990793116020202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116020202

Keywords

Navigation