Skip to main content
Log in

Field-aligned currents influence on the ionospheric electric fields: Modification of the Upper Atmosphere model

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We have modified the electric field calculation block of the global three-dimensional time-dependent model of the Earth’s Upper Atmosphere (UAM) to study the influence of the interplanetary magnetic field (IMF) on the ionospheric electric fields. The spatial and temporal distributions of field-aligned currents (FACs) flowing between the ionosphere and the Earth’s magnetosphere are specified from the Lukianova empirical model, which is based on statistical distributions of FACs by Ørsted, CHAMP, and Magsat satellites magnetometer data and takes into account the dependence of FACs on the IMF. The modified version of the UAM is verified with the help of model calculations of the global distribution of the electric field for two IMF vector orientations: B y = B z = 0 and B y = 0, B z =–5 nT. An analysis of calculated latitude–longitude FACs density and electric field potential distributions in geomagnetic coordinates at an altitude of 175 km shows that the modified version of the UAM makes it possible to take into account the dependence of ionospheric electric fields on the IMF, the influence of currents in Region 3, and the seasonal variation of FACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Schunk, Pure Appl. Geophys 127, 255 (1988).

    Article  CAS  Google Scholar 

  2. J. J. Sojka, Rev. Geophys. 27, 371 (1989).

    Article  Google Scholar 

  3. J. J. Sojka, R. W. Schunk, M. D. Bowline, et al., J. Geophys. Res. 103, 20669 (1998).

    Article  Google Scholar 

  4. D. N. Anderson, Planet. Space Sci. 21, 409 (1973).

    Article  Google Scholar 

  5. D. T. Decker, C. E. Valladares, R. Sheehan, et al., Radio Sci. 29, 249 (1994).

    Article  Google Scholar 

  6. T. J. Fuller-Rowell and D. Rees, J. Atmos. Sci. 37, 2545 (1980).

    Article  Google Scholar 

  7. S. Quegan, G. J. Bailey, R. J. Moffett, et al., J. Atmos. Terr. Phys. 44, 619 (1982).

    Article  CAS  Google Scholar 

  8. G. H. Millward, H. Rishbeth, T. J. Fuller-Rowell, et al., J. Geophys. Res. 101, 5149 (1996).

    Article  Google Scholar 

  9. T.-Z. Ma and R. W. Schunk, J. Geophys. Res. 100, 19701 (1995).

    Article  Google Scholar 

  10. A. D. Richmond, E. C. Ridley, and R. G. Roble, Geophys. Rev. Lett. 6, 601 (1992).

    Article  Google Scholar 

  11. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. 127, 219 (1988).

    Article  CAS  Google Scholar 

  12. A. A. Namgaladze, O. V. Martynenko, and A. N. Namgaladze, Geomagn. Aeron. Int. 1, 53 (1998).

    Google Scholar 

  13. G. Tóth, I. V. Sokolov, T. I. Gombosi, et al., J. Geophys. Res. 110, A12226 (2005).

    Article  Google Scholar 

  14. R. A. Heelis, J. K. Lowell, and R. W. Spiro, J. Geophys. Res. 87, 6339 (1982).

    Article  Google Scholar 

  15. D. R. Weimer, N. C. Maynard, W. J. Burke, et al., Planet. Space Sci. 38, 1207 (1990).

    Article  Google Scholar 

  16. B. E. Prokhorov, M. Förster, M. He, et al., J. Geophys. Res. 119, 6704 (2014).

    Article  Google Scholar 

  17. R. Lukianova and F. Christiansen, J. Geophys. Res. 111, A03213 (2006).

    Google Scholar 

  18. B. E. Bryunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  19. J. M. Picone, A. E. Hedin, D. P. Drob, et al., J. Geophys. Res. A 107, 1468 (2002).

    Article  Google Scholar 

  20. A. E. Hedin, E. L. Fleming, A. H. Manson, et al., J. Atmos. Terr. Phys. 58, 1421 (1996).

    Article  Google Scholar 

  21. T. Iijima and T. A. Potemra, J. Geophys. Res. A 83, 599 (1978).

    Article  Google Scholar 

  22. A. A. Namgaladze, Yu. V. Zubova, A. N. Namgaladze, et al., Adv. Space Res. 37, 380 (2006).

    Article  Google Scholar 

  23. M. Förster, Y. I. Feldstein, S. E. Haaland, et al., Ann. Geophys. 27, 3077 (2009).

    Article  Google Scholar 

  24. E. D. P. Cousins and S. G. Shepherd, J. Geophys. Res. 115, A12329 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Knyazeva.

Additional information

Original Russian Text © M.A. Knyazeva, A.A. Namgaladze, K.E. Beloushko, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 10, pp. 12–17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazeva, M.A., Namgaladze, A.A. & Beloushko, K.E. Field-aligned currents influence on the ionospheric electric fields: Modification of the Upper Atmosphere model. Russ. J. Phys. Chem. B 9, 758–763 (2015). https://doi.org/10.1134/S1990793115050206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115050206

Keywords

Navigation