Skip to main content

Modeling of the Ionospheric Current System and Calculating Its Contribution to the Earth’s Magnetic Field

  • Chapter
Magnetic Fields in the Solar System

Abstract

The additional magnetic field produced by the ionospheric current system is a part of the Earth’s magnetic field. This current system is a highly variable part of a global electric circuit. The solar wind and interplanetary magnetic field (IMF) interaction with the Earth’s magnetosphere is the external driver for the global electric circuit in the ionosphere. The energy is transferred via the field-aligned currents (FACs) to the Earth’s ionosphere. The interactions between the neutral and charged particles in the ionosphere lead to the so-called thermospheric neutral wind dynamo which represents the second important driver for the global current system. Both processes are components of the magnetosphere–ionosphere–thermosphere (MIT) system, which depends on solar and geomagnetic conditions, and have significant seasonal and UT variations.

The modeling of the global dynamic Earth’s ionospheric current system is the first aim of this investigation. For our study, we use the Potsdam version of the Upper Atmosphere Model (UAM-P). The UAM is a first-principle, time-dependent, and fully self-consistent numerical global model. The model includes the thermosphere, ionosphere, plasmasphere, and inner magnetosphere as well as the electrodynamics of the coupled MIT system for the altitudinal range from 80 (60) km up to the 15 Earth radii. The UAM-P differs from the UAM by a new electric field block. For this study, the lower latitudinal and equatorial electrodynamics of the UAM-P model was improved.

The calculation of the ionospheric current system’s contribution to the Earth’s magnetic field is the second aim of this study. We present the method, which allows computing the additional magnetic field inside and outside the current layer as generated by the space current density distribution using the Biot-Savart law. Additionally, we perform a comparison of the additional magnetic field calculation using 2D (equivalent currents) and 3D current distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001)

    Article  ADS  Google Scholar 

  • Brunelli, B.E., Namgaladze, A.A.: Fizika Ionosfery. Nauka, Moscow (1988). ISBN: 5-02-000716-1 (in Russian)

    Google Scholar 

  • Förster, M., Namgaladze, A.A., Yurik, R.Y.: Thermospheric composition changes deduced from geomagnetic storm modeling. Geophys. Res. Lett. 26, 2625–2628 (1999)

    Article  ADS  Google Scholar 

  • Förster, M., Prokhorov, B.E., Namgaladze, A.A., Holschneider, M.: Numerical modeling of solar wind influences on the dynamics of the high-latitude upper atmosphere. Adv. Radio Sci. 10, 299–312 (2012)

    Article  ADS  Google Scholar 

  • Fukushima, N.: Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep. Ionosph. Space Res. Jap. 30(1/2), 35–40 (1976)

    ADS  Google Scholar 

  • He, M., Vogt, J., Lühr, H., Sorbalo, E., Blagau, A., Le, G., Lu, G.: A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39, L18105 (2012)

    Article  ADS  Google Scholar 

  • Hedin, A.E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991)

    Article  ADS  Google Scholar 

  • Hedin, A.E., Biondi, M.A., Burnside, R.G., Hernandez, G., Johnson, R.M., Killeen, T.L., Mazaudier, C., Meriwether, J.W., Salah, J.E., Sica, R.J., Smith, R.W., Spencer, N.W., Wickwar, V.B., Virdi, T.S.: Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657–7688 (1991)

    Article  ADS  Google Scholar 

  • Iijima,T., Potemra, T.A.: The amplitude distribution of the field–aligned currents at northern high latitudes observed by TRIAD. J. Geophys. Res. 81, 2165–2174 (1976)

    Article  ADS  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V.: Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: the dynamo field and equatorial electrojet. Geomagn. Aeron. (Engl. translation) 46(4), 457–466 (2006)

    Article  ADS  Google Scholar 

  • Klimenko, V.V., Klimenko, M.V., Bryukhanov, V.V.: Numerical modeling of the electric field and zonal current in the Earth’s ionosphere - statement of the problem and test calculations (in Russian). Matem. Mod. 18(3), 77–92 (2006)

    MATH  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V.: Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Adv. Radio Sci. 5, 385–392 (2007)

    Article  ADS  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M.: Global model of the thermosphere–ionosphere–protonosphere system. Pure Appl. Geophys. 127(2/3), 219–254 (1988)

    Article  ADS  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M.: A global numerical model of the thermosphere, ionosphere, and protonosphere of the earth. Geomagn. Aeron. (Engl. translation) 30(4), 515–521 (1990)

    Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Surotkin, V.A., Naumova, N.M.: Numerical modelling of the thermosphere–ionosphere–protonosphere system. J. Atmos. Terr. Phys. 53, 1113–1124 (1991)

    Article  ADS  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Smertin, V.M., Surotkin, V.A.: Numerical modelling of the global coupling processes in the near–earth space environment. In: Baker, D.N., Papitashvili, V.O., Teague, M.J., (eds.) Proceedings of the 1992 Symposium/5th COSPAR Colloquium, vol. 5, pp. 807–811. Pergamon Press, Washington (1994)

    Google Scholar 

  • Namgaladze, A.A., Martynenko, O.V., Namgaladze, A.N.: Global model of the upper atmosphere with variable latitudinal integration step. Int. J. Geomagn. Aeron. 1(1), 53–58 (1998)

    Google Scholar 

  • Namgaladze, A.A., Namgaladze, A.N., Yurik, R.Yu.: Global modeling of the quiet and disturbed upper atmosphere. Phys. Chem. Earth Part C 25(5/6), 533–536 (2000)

    ADS  Google Scholar 

  • Namgaladze, A.A., Förster, M., Yurik, R.Y.: Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model. Ann. Geophys. 18, 461–477 (2000)

    Article  ADS  Google Scholar 

  • Namgaladze, A.A., Förster, M., Prokhorov, B.E., Zolotov, O.V.: Electromagnetic drivers in the upper atmosphere: observations and modeling.Physics of Earth and Space Environment, pp. 165–219. Springer, Dordrecht (2013). ISBN: 978-94-007-2913-1 (Print) 978-94-007-2914-8 (online)

    Google Scholar 

  • Papitashvili, V.O., Rich, F.J.: High-latitude ionospheric convection models derived from defense meteorological satellite program ion drift observations and parameterized by the interplanetary magnetic field strength and direction. J. Geophys. Res. 107(A8), SIA 17-1–SIA 17-13 (2002)

    Article  Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002)

    Article  Google Scholar 

  • Prokhorov, B.E.: High-latitude coupling processes between thermospheric circulation and solar wind driven magnetospheric currents and plasma convection. PhD thesis, Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät, Potsdam, Germany (2016)

    Google Scholar 

  • Prokhorov, B.E., Förster, M., He, M., Namgaladze, A.A., Holschneider, M.: Using MFACE as input in the UAM to specify MIT dynamics. J. Geophys. Res. 119(8), 6704–6714 (2014)

    Article  Google Scholar 

  • Richmond, A.D., Ridley, E.C., Roble, R.G.: A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992)

    Article  ADS  Google Scholar 

  • Takeda, M., Maeda, H.: Three-dimensional structure of ionospheric currents, I. Currents caused by diurnal tidal winds. J. Geophys. Res. 85(A12), 6895–6899 (1980)

    ADS  Google Scholar 

  • Volkov, M.A., Namgaladze, A.A.: Models of field–aligned currents needful to simulate the substorm variations of the electric field and other parameters observed by EISCAT. Ann. Geophys. 14(12), 1356–1361 (1996)

    Article  ADS  Google Scholar 

  • Yu, T., Wan, W., Liu, L.: A theoretical model for ionospheric electric fields at mid- and low-latitudes. Sci. China Ser. G 46(1), 23–32 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris E. Prokhorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Prokhorov, B.E., Förster, M., Lesur, V., Namgaladze, A.A., Holschneider, M., Stolle, C. (2018). Modeling of the Ionospheric Current System and Calculating Its Contribution to the Earth’s Magnetic Field. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_10

Download citation

Publish with us

Policies and ethics