Skip to main content
Log in

Preparation of nanoporous polyolefin films in supercritical carbon dioxide

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The peculiarities of uniaxial deformation of semicrystalline polyolefins were studied using high-density polyethylene and isotactic polypropylene as an example in carbon dioxide at 35–75°C and pressures of 0.1–30 MPa. A nanoporous structure (with pore diameters of 3–7 nm) started to form in polymer films by the delocalized crazing mechanism at 4–5 MPa and higher. The increment of the pore volume depends on the parameters (pressure, temperature, and density) of the medium and on the deformation of the polymer, reaching 30–70%. The pore formation by the crazing mechanism was most effective when CO2 was in the supercritical state at a nearly critical temperature (35°C) and its density approached the density of a liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mulder, Basic Principles of Membrane Technology (Mir, Moscow, 1999; Kluwer, Dordrecht, 1996).

    Google Scholar 

  2. W. Albrecht, H. Fuchs, and W. Kittelmann, Nonwoven Fabrics: Raw Materials, Manufacture, Applications, Characteristics, Testing Processes (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  3. W. J. Nauta, PhD Thesis (University of Twente, Eindhoven, 2000).

  4. L. I. Kravets, S. N. Dmitriev, and P. Yu. Apel, Rad. Meas 25, 729 (1995).

    Article  CAS  Google Scholar 

  5. G. K. El’yashevich, I. S. Kuryndin, V. K. Lavrent’ev, A. Yu. Bobrovskii, and V. Bukosek, Phys. Solid State 54, 1907 (2012).

    Article  Google Scholar 

  6. A. A. Berlin and F. A. Shutov, Chemistry and Technology of Gas-Filled High Polymers (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  7. Yu. T. Panov, Polim. Mater. 99(8), 10 (2007).

    Google Scholar 

  8. L. N. Nikitin, A. Yu. Nikolaev, E. E. Said-Galiev, A. I. Gamzazade, and A. R. Khokhlov, Sverkhkrit. Fluidy: Teor. Prakt. 1(1), 77 (2006).

    Google Scholar 

  9. Zh.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Zh.-N. Zhu, and W.-K. Yuan, J. Supercrit. Fluids 41, 299 (2007).

    Article  CAS  Google Scholar 

  10. X.-L. Jiang, T. Liu, Zh.-M. Xu, L. Zhao, G.-H. Hu, and W.-K. Yuan, J. Supercrit. Fluids 48, 167 (2009).

    Article  CAS  Google Scholar 

  11. Zh. Xing, G. Wu, Sh. Huang, Sh. Chen, and H. Zeng, J. Supercrit. Fluids 47, 281 (2008).

    Article  CAS  Google Scholar 

  12. S.-Y. Lee, S.-Y. Park, and H.-S. Song, Polymer 47, 3540 (2006).

    Article  CAS  Google Scholar 

  13. A. S. Argon, Polymer 52, 2319 (2011).

    Article  CAS  Google Scholar 

  14. R. A. C. Deblieck, D. J. M. van Beek, K. Remerie, and I. M. Ward, Polymer 52, 2979 (2011).

    Article  CAS  Google Scholar 

  15. A. L. Volynskii and N. F. Bakeev, Solvent Crazing in Polymers (Elsevier, Amsterdam, 1995).

    Google Scholar 

  16. RF Patent No. 2382057 (2008).

  17. E. S. Trofimchuk, A. V. Efimov, L. N. Nikitin, N. I. Nikonorova, A. A. Dolgova, L. M. Yarysheva, O. V. Arzhakova, A. L. Volynskii, N. F. Bakeev, and A. R. Khokhlov, Dokl. Chem. 428, 238 (2009).

    Article  CAS  Google Scholar 

  18. E. S. Trofimchuk, A. V. Efimov, N. I. Nikonorova, A. L. Volynskii, N. F. Bakeev, L. N. Nikitin, A. R. Khokhlov, and L. A. Ozerina, Polymer Sci., Ser. A 53, 546 (2011).

    Article  CAS  Google Scholar 

  19. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction, 2nd ed. (Butterworth-Heineman, Stoneham, MA, 1994).

    Google Scholar 

  20. I. Tsivintzelis, A. G. Angelopoulou, and C. Panayiotou, Polymer 48, 5928 (2007).

    Article  CAS  Google Scholar 

  21. O. V. Arzhakova, A. A. Dolgova, L. M. Yarysheva, A. L. Volynskii, and N. F. Bakeev, Perspekt. Mater., No. 1, 39 (2011).

    Google Scholar 

  22. A. Yu. Yarysheva, D. V. Bagrov, E. G. Rukhlya, L. M. Yarysheva, A. L. Volynskii, and N. F. Bakeev, Dokl. Phys. Chem. 440, 198 (2011).

    Article  CAS  Google Scholar 

  23. T. Koga, P. Ginb, H. Yamaguchi, M. K. Endoh, M. Asada, L. Sendogdular, M. Kobayashi, A. Takahara, B. Akgun, S. K. Satija, and T. Sumi, Polymer 52, 4331 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Trofimchuk.

Additional information

Original Russian Text © E.S. Trofimchuk, A.V. Efimov, L.N. Nikitin, N.I. Nikonorova, A.L. Volynskii, A.R. Khokhlov, N.F. Bakeev, 2013, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2013, Vol. 8, No. 4, pp. 36–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimchuk, E.S., Efimov, A.V., Nikitin, L.N. et al. Preparation of nanoporous polyolefin films in supercritical carbon dioxide. Russ. J. Phys. Chem. B 8, 1019–1024 (2014). https://doi.org/10.1134/S199079311408017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311408017X

Keywords

Navigation