Skip to main content
Log in

Model of a homochiral supramolecular string

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The model of a homochiral string (from N-trifluoroacetyl-2-amino-3-methylpentanol-1 molecules) is based on experimental data molecular dynamics simulation results. The resulting model string is a hollow stable helix with characteristics consistent with the available experimental data. It is shown that the main contribution to the formation of the string comes from the dispersion interaction (∼0.5 eV) of the homochiral molecules in complementary stacks. In this case, neighboring molecular dipoles are anticollinear, whereas the string is antiferroelectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Godeau and D. Barthelemy, Langmuir 25, 8447 (2009).

    Article  CAS  Google Scholar 

  2. M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).

    Article  CAS  Google Scholar 

  3. A. A. Bredikhin, Z. A. Bredikhina, and A. V. Pashagin, Mendeleev Commun. 21, 144 (2011).

    Article  CAS  Google Scholar 

  4. C. Li, N.J. Buurma, I. Haq, C. Turner, and S. P. Armes, Langmuir 21, 11026 (2005).

    Article  CAS  Google Scholar 

  5. J. Peng, K. Liu, J. Liu, et al., Langmuir 24, 2992 (2008).

    Article  CAS  Google Scholar 

  6. A. Gansäuer, I. Winkler, T. Klawonn, et al., Organometallics 28, 1377 (2008).

    Article  Google Scholar 

  7. A. R. Hirst, I. A. Coates, T. R. Boucheteau, et al., J. Am. Chem. Soc. 130, 9113 (2008).

    Article  CAS  Google Scholar 

  8. C. C. Lee, C. Grenier, E. W. Meijer, and A. P. H. J. Schenning, Chem. Soc. Rev. 38, 671 (2009).

    Article  CAS  Google Scholar 

  9. S. Vauthey, S. Santoso, H. Gong, N. Watson, S. Zhang, Proc. Nat. Acad. Sci. 99, 5355 (2002).

    Article  CAS  Google Scholar 

  10. M. George and R. G. Weiss, Langmuir 19, 1017 (2003).

    Article  CAS  Google Scholar 

  11. M. George, G. P. Funkhouser, P. Terech, and R. G. Wise, Langmuir 22, 7885 (2006).

    Article  CAS  Google Scholar 

  12. M. George and R. G. Weiss, J. Am. Chem. Soc. 123, 10393 (2001).

    Article  CAS  Google Scholar 

  13. S. Laan, B. L. Feringa, R. M. Kellogg, and J. Esch, Langmuir 18, 7136 (2002).

    Article  Google Scholar 

  14. K. Inoue, Y. Ono, Y. Kanekiyo, et al., Org. Chem. 64, 2933 (1999).

    Article  CAS  Google Scholar 

  15. B. G. Bag, G. C. Maity, and S. R. Pramanik, Supramol. Chem. 17, 383 (2010).

    Article  Google Scholar 

  16. J. Madsen, S. P. Armes, K. Bertal, S. MacNeil, and A. L. Lewis, Biomacromolecules 10, 1875 (2009).

    Article  CAS  Google Scholar 

  17. C. Zhan, P. Gao, and M. Liu, Chem. Commun., 462 (2005).

    Google Scholar 

  18. P. Terech and R. G. Weiss, Chem. Rev. 97, 3133 (1997).

    Article  CAS  Google Scholar 

  19. S. J. Langford, M. J. Latter, V. L. Lau, et al., Org. Lett. 8, 1371 (2006).

    Article  CAS  Google Scholar 

  20. L. Lu and R. G. Weiss, Langmuir 11, 3630 (1995).

    Article  CAS  Google Scholar 

  21. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).

    Article  CAS  Google Scholar 

  22. S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).

    Article  CAS  Google Scholar 

  23. S. V. Stovbun, A. A. Skoblin, A. I. Mikhailov, et al., Nanotechnol. Russia 7, 531 (2012).

    Article  Google Scholar 

  24. S. S. Stovbun, A. A. Skoblin, and A. A. Berlin, Dokl. Phys. Chem. 450, 111 (2013).

    Article  CAS  Google Scholar 

  25. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Russ. J. Phys. Chem. B 5, 1019 (2011).

    Article  CAS  Google Scholar 

  26. S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 274 (2012).

    Article  Google Scholar 

  27. S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, et al., Russ. J. Phys. Chem. B 6, 341 (2012).

    Article  CAS  Google Scholar 

  28. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Vestn. MGOU, Ser. Estestv. Nauki, No. 2, 55 (2012).

    Google Scholar 

  29. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  30. C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem. 97, 10269 (1993).

    Article  CAS  Google Scholar 

  31. A. A. Granovsky, Firefly, Vers. 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  32. S. Pronk, S. Páll, R. Schulz, et al., Bioinformatics 29, 845 (2013).

    Article  CAS  Google Scholar 

  33. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, et al., Khim. Fiz. 33 (1), 44 (2014).

  34. N. Ben-Tal, D. Sitkoff, I. A. Topol, et al., J. Phys. Chem. B 101, 450 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Zlenko.

Additional information

Original Russian Text © D.V. Zlenko, S.V. Stovbun, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 9, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlenko, D.V., Stovbun, S.V. Model of a homochiral supramolecular string. Russ. J. Phys. Chem. B 8, 613–619 (2014). https://doi.org/10.1134/S199079311405011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079311405011X

Keywords

Navigation