Skip to main content
Log in

Effects of Juglone and Curcumin Administration on Expression of FABP5 and FABP9 in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Among natural chemopreventive agents, polyphenol curcumin and naphthoquinone juglone, which has broad-spectrum anticancer activity, are highly valued. Fatty acid-binding proteins (FABPs), which vary depending on the type of cancer, are small (14–15 kDa) proteins belonging to the lipid-binding protein superfamily. FABPs are located in many tissues and play an essential role in fatty acid metabolism, cell growth, and proliferation. It is suggested that they can be used as tumor markers. The objective of this work is to study the effects of curcumin and juglone on cell viability and to evaluate their anticancer and cytotoxic effects and changes in the FABP5 and FABP9 gene expression and protein levels in breast cancer cell lines MCF-7 and MDA-MB-231. Information on FABP5 and FABP9 gene expression in BRCA (breast invasive cancer) and normal cells was collected from the GEPIA2 and UALCAN databases. MTT analysis revealed that the IC50 (concentration of half maximal inhibitory effect) in MCF-7 cells was 22.4 and 16.3 μM for curcumin and juglone, respectively, and in MDA-MB-231 cells, 10.4 and 3.4 μM for curcumin and juglone, respectively. In both cell lines, FABP5 and FABP9 gene expression and protein levels were also analyzed. We found that treatment of MCF-7 cells with curcumin and juglone reduced cell viability, expression of the FABP5 and FABP9 genes, and the levels of the FABP5 and FABP9 proteins. In the MDA-MB-231 cell line, the FABP5 and FABP9 levels were increased at low doses of curcumin and juglone and decreased at higher doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kamei H., Koide T., Kojima T., Hashimoto Y., Hasegawa M. 1998. Inhibition of cell growth in culture by quinones. Cancer Biother. Radio. 13, 185–188.

    CAS  Google Scholar 

  2. Ji Y.-B., Qu Z.-Y., Zou X. 2011. Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway. Exp. Toxicol. Pathol. 63, 69–78.

    Article  CAS  PubMed  Google Scholar 

  3. Ammon H.P., Wahl M.A. 1991. Pharmacology of Curcuma longa. Planta Med. 57, 1–7.

    Article  CAS  PubMed  Google Scholar 

  4. Currie E., Schulze A., Zechner R., Walther T.C., Farese Jr. R.V. 2013. Cellular fatty acid metabolism and cancer. Cell Metab. 18 (2), 153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hashimoto T., Kusakabe T., Watanabe K., Sugino T., Fukuda T., Nashimoto A., Honma K-I., Sato Y., Kimura H., Fujii H. 2004. Liver-type fatty acid-binding protein is highly expressed in intestinal metaplasia and in a subset of carcinomas of the stomach without association with the fatty acid synthase status in the carcinoma. Pathobiology. 71, 115–122.

    Article  CAS  PubMed  Google Scholar 

  6. Makowski L., Hotamisligil G.S. 2005. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr. Opin. Lipidol. 16, 543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawaguchi K., Kinameri A., Suzuki S., Senga S., Ke Y., Fujii H. 2016. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis. Biochem. J. 473, 449–461.

    Article  CAS  PubMed  Google Scholar 

  8. Fang L.Y., Wong T.Y., Chiang W.F., Chen Y.L. 2010. Fatty-acid-binding protein 5 promotes cell proliferation and invasion in oral squamous cell carcinoma. J. Oral Pathol. Med. 39, 342–348.

    Article  CAS  PubMed  Google Scholar 

  9. Levi L., Wang Z., Doud M.K., Hazen S.L., Noy N. 2015. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5. Nat. Commun. 6, 1–10.

    Article  Google Scholar 

  10. Senga S., Kobayashi N., Kawaguchi K., Ando A., Fujii H. 2018. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. BBA, Mol. Cell Biol. 1863, 1057–1067.

    CAS  Google Scholar 

  11. Mashima T., Seimiya H., Tsuruo T. 2009. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Brit. J. Cancer. 100, 1369–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menendez J.A., Lupu R. 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer. 7, 763–777.

    Article  CAS  PubMed  Google Scholar 

  13. Oko R., Morales C.R. 1994. A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev. Biol. 166, 235–245.

    Article  CAS  PubMed  Google Scholar 

  14. Al Fayi M.S., Gou X., Forootan SS., Al-Jameel W., Bao Z., Rudland P.R., Cornford P.A., Hussain S.A., Ke Y. 2016. The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance. Oncotarget. 7, 82783.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amiri M., Yousefnia S., Forootan FS., Peymani M., Ghaedi K., Esfahani MHN. 2018. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene. 676, 171–183.

    Article  CAS  PubMed  Google Scholar 

  16. Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. 2017. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandrashekar D.S., Bashel B., Balasubramanya S.A.H., Creighton C.J., Ponce-Rodriguez I., Chakravarthi B.V., Varambally S. 2017. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 19, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dinkova-Kostova A.T., Talalay P. 2008. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 52, S128–S138.

    PubMed  Google Scholar 

  19. Pulido-Moran M., Moreno-Fernandez J., Ramirez-Tortosa C., Ramirez-Tortosa M. 2016. Curcumin and health. Molecules. 21, 264.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu C., Niestroj M., Yuan D., Chang S., Chen J. 2015. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int. J. Nanomed. 10, 2065.

    CAS  Google Scholar 

  21. López-Lázaro M. 2008. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res. 52, S103–S127.

    PubMed  Google Scholar 

  22. Bahrami A., Majeed M., Sahebkar A. 2019. Curcumin: A potent agent to reverse epithelial-to-mesenchymal transition. Cell. Oncol. 42, 405–421.

    Article  CAS  Google Scholar 

  23. Shanmugam M.K., Rane G., Kanchi M.M., Arfuso F., Chinnathambi A., Zayed M., Alharbi S.A., Tan B.K., Kumar A.P., Sethi G. 2015. The multifaceted role of curcumin in cancer prevention and treatment. Molecules. 20, 2728–2769.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aggarwal B.B., Harikumar K.B. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell B. 41, 40–59.

    Article  CAS  Google Scholar 

  25. Anto R.J., Mukhopadhyay A., Denning K., Aggarwal B.B. 2002. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis. 23, 143–150.

    Article  CAS  PubMed  Google Scholar 

  26. Hayeshi R., Mutingwende I., Mavengere W., Masiyanise V., Mukanganyama S. 2007. The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin. Food Chem. Toxicol. 45, 286–295.

    Article  CAS  PubMed  Google Scholar 

  27. Ruby A.J., Kuttan G., Babu K.D., Rajasekharan K., Kuttan R. 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94, 79–83.

    Article  CAS  PubMed  Google Scholar 

  28. Thapliyal R., Maru G.B. 2001. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem. Toxicol. 39, 541–547.

    Article  CAS  PubMed  Google Scholar 

  29. Taebi R., Mirzaiey MR., Mahmoodi M., Khoshdel A., Fahmidehkar MA., Mohammad-Sadeghipour M., Hajizadeh MR. 2020. The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2). Gene Rep. 18, 100581.

    Article  Google Scholar 

  30. Hu C., Li M., Guo T., Wang S., Huang W., Yang K., Liao Z., Wang J., Zhang F., Wang H. 2019. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine: Int. J. Phytother. Phytopharmacol. 58, 152740.

    Article  CAS  Google Scholar 

  31. Ji Y., Xin G., Qu Z., Zou X., Yu M. 2016. Mechanism of juglone-induced apoptosis of MCF-7 cells by the mitochondrial pathway. Genet. Mol. Res. 15 (3). https://doi.org/10.4238/gmr.15038785

  32. Parasramka M.A., Gupta S.V. 2012. Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells. J. Oncol. 2012, 709739. https://doi.org/10.1155/2012/709739

  33. Chang C.-C., Fu C.-F., Yang W.-T., Chen T.-Y., Hsu Y.-C. 2012. The cellular uptake and cytotoxic effect of curcuminoids on breast cancer cells. Taiwan. J. Obstet. Gyne. 51, 368–374.

    Article  Google Scholar 

  34. Zhao G., Wu M., Wang X., Du Z., Zhang G. 2017. Effect of FABP5 gene silencing on the proliferation, apoptosis and invasion of human gastric SGC-7901 cancer cells. Oncol. Lett. 14, 4772–4778.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jing C., Beesley C., Foster C.S., Chen H., Rudland P.S., West D.C., Fujii H., Smith P.H., Ke Y. 2001. Human cutaneous fatty acid-binding protein induces metastasis by up-regulating the expression of vascular endothelial growth factor gene in rat Rama 37 model cells. Cancer Res. 61, 4357–4364.

    CAS  PubMed  Google Scholar 

  36. Liu R-Z., Graham K., Glubrecht D.D., Germain D.R., Mackey J.R., Godbout R. 2011. Association of FABP5 expression with poor survival in triple-negative breast cancer: Implication for retinoic acid therapy. Am. J. Pathol. 178, 997–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levi L., Lobo G., Doud M.K., Von Lintig J., Seachrist D., Tochtrop G.P., Noy N. 2013. Genetic ablation of the fatty acid–binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res. 73, 4770–4780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gupta S., Pramanik D., Mukherjee R., Campbell N.R., Elumalai S., De Wilde R.F., Hong S-M., Goggins M.G., De Jesus-Acosta A., Laheru D. 2012. Molecular determinants of retinoic acid sensitivity in pancreatic cancer. Clin. Cancer Res. 18, 280–289.

    Article  CAS  PubMed  Google Scholar 

  39. Thulasiraman P., McAndrews D.J., Mohiudddin I.Q. 2014. Curcumin restores sensitivity to retinoic acid in triple negative breast cancer cells. BMC Cancer. 14, 1–14.

    Article  Google Scholar 

Download references

Funding

This research was supported by Scientific Research Project of Necmettin Erbakan University (MSc thesis project no. 181 315 002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Korucu.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyler, D., Korucu, E.N., Menevse, E. et al. Effects of Juglone and Curcumin Administration on Expression of FABP5 and FABP9 in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines. Biochem. Moscow Suppl. Ser. A 17, 58–67 (2023). https://doi.org/10.1134/S199074782310001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074782310001X

Keywords:

Navigation