Skip to main content
Log in

Malondialdehyde but Not Methylglyoxal Impairs Insulin Signaling, NO Production, and Endothelial Barrier

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Dyslipidemia and hyperglycemia portray “cause-and-consequence” of type 2 diabetes mellitus (T2DM). They are linked to malondialdehyde (MDA) and methylglyoxal (MGO) generation that result from membrane lipid peroxidation and oxidative glucose conversions. We compared the effects of exogenous MDA and MGO on human umbilical vein endothelial cells and found that MDA but not MGO impairs insulin activation of PI3-kinase pathway, NO production, and endothelial barrier capacity. MDA abolished insulin activation of Akt and eNOS but not that of IRS. These results substantiate the hypothesis that MDA may be involved in endothelial dysfunction as an early event in the development of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Boden G., Chen X., Ruiz J., White J.V., Rossetti L. 1994. Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Invest. 93, 2438–2446.

    Article  CAS  Google Scholar 

  2. Petersen M.C., Shulman G.I. 2018. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223.

    Article  CAS  Google Scholar 

  3. Sena C.M., Pereira A.M., Seica R. 2013. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim. Biophys. Acta. 1832, 2216–2231.

    Article  CAS  Google Scholar 

  4. Shi Y., Vanhoutte P.M. 2017. Macro- and microvascular endothelial dysfunction in diabetes. J. Diabetes. 9, 434–449.

    Article  CAS  Google Scholar 

  5. Betteridge D.J. 2000. What is oxidative stress? Metabolism. 49, 3–8.

    Article  CAS  Google Scholar 

  6. Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. 2002. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Rev. 23, 599–622.

    Article  CAS  Google Scholar 

  7. Paneni F., Costantino S., Cosentino F. 2015. Role of oxidative stress in endothelial insulin resistance. World J. Diab. 6, 326–332.

    Article  Google Scholar 

  8. Bakker W., Eringa E.C., Sipkema P., van Hinsbergh V.W.M. 2009. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 335, 165–189.

    Article  CAS  Google Scholar 

  9. Del Turco S., Gaggini M., Daniele G., Basta G., Folli F., Sicari R., Gastaldelli A. 2013. Insulin resistance and endothelial dysfunction: A mutual relationship in cardiometabolic risk. Curr. Pharm. Des. 19, 2420–2431.

    Article  CAS  Google Scholar 

  10. Jansson P.A. 2007. Endothelial dysfunction in insulin resistance and type 2 diabetes. J. Intern. Med. 262, 173–183.

    Article  CAS  Google Scholar 

  11. Potenza M.A., Addabbo F., Montagnani M. 2009. Vascular actions of insulin with implications for endothelial dysfunction. Am. J. Physiol. 297, E568–E577.

    CAS  Google Scholar 

  12. Betteridge D.J. 2000. What is oxidative stress? Metabolism. 49, 3–8.

    Article  CAS  Google Scholar 

  13. Del Rio D., Stewart A.J., Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15, 316–328.

    Article  Google Scholar 

  14. Wang L., Chen Y., Li X., Zhang Y., Gulbins E., Zhang Y. 2016. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget. 7, 73229–73241.

    Article  Google Scholar 

  15. Dierckx N., Horvath G., Van Gils C., Vertommen J., Van de Vliet J., De Leeuw I., Manuel-y-Keenoy B. 2003. Oxidative stress status in patients with diabetes mellitus: Relationship to diet. Eur. J. Clin. Nutr. 57, 999–1008.

    Article  CAS  Google Scholar 

  16. Gunawardena H.P., Silva K.D.R.R., Sivakanesan R., Katulanda P. 2019. Increased lipid peroxidation and erythrocyte glutathione peroxidase activity of patients with type 2 diabetes mellitus: Implications for obesity and central obesity. Obes. Med. 15, 100118.

    Article  Google Scholar 

  17. Martin-Gallan P., Carrascosa A., Gussinye M., Dominguez C. 2003. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Rad. Biol. Med. 34, 1563–1574.

    Article  CAS  Google Scholar 

  18. Polidori M.C., Savino K., Alunni G., Freddio M., Senin U., Sies H., Stahl W., Mecocci P. 2002. Plasma lipophilic antioxidants and malondialdehyde in congestive heart failure patients: Relationship to disease severity. Free Rad. Biol. Med. 32, 148–152.

    Article  CAS  Google Scholar 

  19. Tamer L., Sucu N., Polat G., Ercan B., Aytacoglu B., Yücebilgiç G., Ünlu A., Dikmengil M., Atik U. 2002. Decreased serum total antioxidant status and erythrocyte-reduced glutathione levels are associated with increased serum malondialdehyde in atherosclerotic patients. Arch. Med. Res. 33, 257–260.

    Article  CAS  Google Scholar 

  20. Ayala A., Munoz M.F., Arguelles S. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438.

    Article  Google Scholar 

  21. Singh R., Barden A., Mori T., Beilin L. 2001. Advanced glycation end-products: A review. Diabetologia. 44, 129–146.

    Article  CAS  Google Scholar 

  22. Arner P., Ryden M. 2015. Fatty acids, obesity and insulin resistance. Obes. Facts. 8, 147–155.

    Article  CAS  Google Scholar 

  23. Samsonov M.V., Khapchaev A.Y., Vorotnikov A.V., Vlasik T.N., Yanushevskaya E.V., Sidorova M.V., Efremov E.E., Lankin V.Z., Shirinsky V.P. 2017. Impact of atherosclerosis- and diabetes-related dicarbonyls on vascular endothelial permeability: A comparative assessment. Oxid. Med. Cell Longev. 2017, 1625130.

    Article  Google Scholar 

  24. Li H., Xiao Y., Tang L., Zhong F., Huang G., Xu J.-M., Xu A.-M., Dai R.-P., Zhou Z.-G. 2018. Adipocyte fatty acid-binding protein promotes palmitate-induced mitochondrial dysfunction and apoptosis in macrophages. Front. Immunol. 9, 81.

    Article  Google Scholar 

  25. Girona J., Rosales R., Saavedra P., Masana L., Vallve J.-C. 2019. Palmitate decreases migration and proliferation and increases oxidative stress and inflammation in smooth muscle cells: Role of the Nrf2 signaling pathway. Am. J. Physiol. 316, C888–C897.

    Article  CAS  Google Scholar 

  26. Oberbach A., Schlichting N., Heinrich M., Till H., Stolzenburg J.-U., Neuhaus J. 2012. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells. PLoS One. 7, e41026.

    Article  CAS  Google Scholar 

  27. Volpe C.M.O., Abreu L.F.M., Gomes P.S., Gonzaga R.M., Veloso C.A., Nogueira-Machado J.A. 2014. The Production of nitric oxide, IL-6, and TNF-alpha in palmitate-stimulated PBMNCs is enhanced through hyperglycemia in diabetes. Oxid. Med. Cell Longev. 2014, 479587.

    Article  Google Scholar 

  28. Baldwin A.L., Thurston G., Al Naemi H. 1998. Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actin cytoskeleton. Am. J. Physiol. 274, H1776–H1784.

    CAS  PubMed  Google Scholar 

  29. Kurose I., Kubes P., Wolf R., Anderson D.C., Paulson J., Miyasaka M., Granger D.N. 1993. Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ. Res. 73, 164–171.

    Article  CAS  Google Scholar 

  30. Predescu D., Predescu S., Shimizu J., Miyawaki-Shimizu K., Malik A.B. 2005. Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am. J. Physiol. 289, L371–L381.

    CAS  Google Scholar 

  31. Mehta D., Malik A.B. 2006. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367.

    Article  CAS  Google Scholar 

  32. Duran W.N., Breslin J.W., Sanchez F.A. 2010. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc. Res. 87, 254–261.

    Article  CAS  Google Scholar 

  33. Cho M.M., Ziats N.P., Pal D., Utian W.H., Gorodeski G.I. 1999. Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms. Am. J. Physiol. 276, C337–349.

    Article  CAS  Google Scholar 

  34. May J.M., Qu Z.-C. 2011. Nitric oxide mediates tightening of the endothelial barrier by ascorbic acid. Biochem. Biophys. Res. Commun. 404, 701–705.

    Article  CAS  Google Scholar 

  35. Gunduz D., Thom J., Hussain I., Lopez D., Hartel F.V., Erdogan A., Grebe M., Sedding D., Piper H.M., Tillmanns H., Noll T., Aslam M. 2010. Insulin stabilizes microvascular endothelial barrier function via phosphatidylinositol 3-kinase/Akt-mediated Rac1 activation. Arterioscler. Thromb. Vasc. Biol. 30, 1237–1245.

    Article  Google Scholar 

  36. Rath S., Kalogeris T., Mai N., Zibari G., Alexander J.S., Lefer D., Turnage R.H. 2006. Insulin prevents oxidant-induced endothelial cell barrier dysfunction via nitric oxide-dependent pathway. Surgery. 139, 82–91.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation (project no.19-15-00361) for ECIS experiments and by the Russian Foundation for Basic Research (project no. 18-315-00377) for other experiments. The authors thank T.N. Vlasik and E.E. Efremov for providing the anti-MDA and anti-MGO antibodies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Vorotnikov or V. P. Shirinsky.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Vorotnikov

Abbreviations: DAF, 4-amino-5-methylamino-2',7'-difluorofluorescein; EBM, endothelial basal medium; EGM, endothelial growth medium; eNOS, endothelial NO-synthase; FFA, free fatty acid; HUVEC, human umbilical vein endothelial cells; MDA, malondialdehyde; MGO, methylglyoxal; ROS, reactive oxygen species; TER, transendothelial electric resistance; T2DM, type 2 diabetes mellitus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsonov, M.V., Podkuychenko, N.V., Lankin, V.Z. et al. Malondialdehyde but Not Methylglyoxal Impairs Insulin Signaling, NO Production, and Endothelial Barrier. Biochem. Moscow Suppl. Ser. A 15, 195–200 (2021). https://doi.org/10.1134/S1990747821030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821030089

Keywords:

Navigation