Skip to main content
Log in

Interaction of Ordered Lipid Domains in the Presence of Amphipatic Peptides

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In the plasma membranes of eukaryotic cells, relatively ordered lipid–protein domains can be formed. The characteristics of the interaction of domains can have a significant effect on the processes that require the co-localization of several membrane proteins. The ordered lipid bilayer is thicker than the surrounding disordered membrane. Therefore, it is expected that elastic deformations arise at the boundary of ordered domains, aiming at smoothing the jump in bilayer thickness. The typical length of the deformations equals several nanometers, and, as two domains approach each other, the deformations induced by their boundaries begin to overlap, thereby leading to the effective lateral interaction. In this work, we theoretically considered the influence of amphipathic peptides, adsorbed on the membrane, on the interaction energy of ordered domains. Amphipathic peptides can partially incorporate into the membrane, inducing elastic deformations therein. We used the theory of lipid membrane elasticity to analyze the deformation energy of various configurations of ordered domains and amphipathic peptides. In a membrane without peptides, it is necessary to overcome some energy barrier to bring two parallel boundaries of ordered domains into contact with each other. According to the results of our calculations, the presence of amphipathic peptides in a membrane leads to a severalfold increase in the height of this energy barrier. Thus, amphipathic peptides should significantly hinder the fusion of ordered domains and thereby contribute to the stabilization of the ensemble of nano-domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lillemeier B.F., Pfeiffer J.R., Surviladze Z., Wilson B.S., Davis M.M. 2006. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl. Acad. Sci. USA. 103, 18 992–18 997.

    Article  CAS  Google Scholar 

  2. Ayuyan A.G., Cohen F.S. 2008. Raft composition at physiological temperature and pH in the absence of detergents. Biophys. J. 94, 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  3. Yang S.T., Kiessling V., Simmons J.A., White J.M., Tamm L.K. 2015. HIV gp41–mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat. Chem. Biol. 11, 424–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen J.A., Halverson-Tamboli R.A., Rasenick M.M. 2007. Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140.

    Article  CAS  PubMed  Google Scholar 

  5. Pike L.J. 2006. Rafts defined: A report on the Keystone Symposium on lipid rafts and cell function. J. Lip. Res. 47, 1597–1598.

    Article  CAS  Google Scholar 

  6. Pralle A., Keller P., Florin E.L., Simons K., Hörber J.H. 2000. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samsonov A.V., Mihalyov I., Cohen F.S. 2001. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81, 1486–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petruzielo R.S., Heberle F.A., Drazba P., Katsaras J., Feigenson G.W. 2013. Phase behavior and domain size in sphingomyelin-containing lipid bilayers. Biochim. Biophys. Acta. 1828, 1302–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Veatch S.L., Polozov I.V., Gawrisch K., Keller S.L. 2004. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rinia H.A., Snel M.M., van der Eerden J.P., de Kruijff B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96.

    Article  CAS  PubMed  Google Scholar 

  11. Galimzyanov T.R., Lyushnyak A.S., Aleksandrova V.V., Shilova L.A., Mikhalyov I.I., Molotkovskaya I.M., Akimov S.A., Batishchev O.V. 2017. Line activity of ganglioside GM1 regulates raft size distribution in a cholesterol-dependent manner. Langmuir 33, 3517–3524.

    Article  CAS  PubMed  Google Scholar 

  12. Baumgart T., Hess S.T., Webb W.W. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 425, 821–824.

    Article  CAS  PubMed  Google Scholar 

  13. Saitov A., Akimov S.A., Galimzyanov T.R., Glasnov T., Pohl P. 2020. Ordered lipid domains assemble via concerted recruitment of constituents from both membrane leaflets. Phys. Rev. Lett. 124, 108102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landau L.D., Lifshitz E.M., Pitaevskii L.P. 1981. Theoretical physics. Volume X. Physical kinetics. Butterworth-Heinemann, Oxford.

  15. Frolov V.A.J., Chizmadzhev Y.A., Cohen F.S., Zimmerberg J. 2006. “Entropic traps” in the kinetics of phase separation in multicomponent membranes stabilize nanodomains. Biophys. J. 91, 189–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ayuyan A.G., Forsyth C.B., Zhang L., Keshavarzian A., Cohen F.S. 2009. Protein movement between membrane domains: The epidermal growth factor receptor (EGFR) signaling cascade. Biophys. J. 96, 676a.

    Article  Google Scholar 

  17. Molotkovskaya I.M., Svirshchevskaya E.V., Litvinov I.S., Mikhalev I.I., Dyatlovitskaya E.V., Molotkovsky Yu.G., Bergelson L.D. 1992. Immunosuppressive activity of glycosphingolipids – a study of the interaction of interleukin-2 with gangliosides using cells and model systems. Biol. Membrany (Rus.). 9, 143–151.

    CAS  Google Scholar 

  18. Staneva G., Osipenko D.S., Galimzyanov T.R., Pavlov K.V., Akimov S.A. 2016. Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains. Langmuir. 32, 1591–1600.

    Article  CAS  PubMed  Google Scholar 

  19. Bao R., Li L., Qiu F., Yang Y. 2011. Atomic force microscopy study of ganglioside GM1 concentration effect on lateral phase separation of sphingomyelin/dioleoyl phosphatidylcholine/cholesterol bilayers. J. Phys. Chem. B 115, 5923–5929.

    Article  CAS  PubMed  Google Scholar 

  20. Dimova R., Dasgupta R., Fricke N., Liu Y., Agudo-Canalejo J., Grafmuller A., Lipowsky R. 2016. Spontaneous tubulation in giant vesicles induced by GM1 or PEG adsorption. Biophys. J. 110, 244a.

    Article  Google Scholar 

  21. Pinigin K.V., Kondrashov O.V., Jiménez-Munguía I., Alexandrova V.V., Batishchev O.V., Galimzyanov T.R., Akimov S.A. 2020. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci. Rep. 10, 4087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pinigin K.V., Volovik M.V. Batishchev O.V., Akimov S.A. 2020. Interaction of ordered lipid domain boundaries and amphipathic peptides regulates probability of pore formation in membranes. Biol. Membrany (Rus.). 37, 337–349.

    CAS  Google Scholar 

  23. Galimzyanov T.R., Molotkovsky R.J., Kuzmin P.I., Akimov S.A. 2011. Stabilization of the raft bilayer structure due to elastic deformations of the membrane. Biol. Membrany (Rus.). 28, 307–314.

    CAS  Google Scholar 

  24. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. C. 28, 693–703.

    Article  CAS  PubMed  Google Scholar 

  25. Hamm M., Kozlov M.M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur. Phys. J. E. 3, 323–335.

    Article  CAS  Google Scholar 

  26. Terzi M.M., Deserno M. 2017. Novel tilt-curvature coupling in lipid membranes. J. Chem. Phys. 147, 084702.

    Article  PubMed  CAS  Google Scholar 

  27. Terzi M.M., Ergüder M.F., Deserno M. 2019. A consistent quadratic curvature-tilt theory for fluid lipid membranes. J. Chem. Phys. 151, 164108.

    Article  PubMed  CAS  Google Scholar 

  28. Pinigin K.V., Kuzmin P.I., Akimov S.A., Galimzya-nov T.R. 2020. Additional contributions to elastic energy of lipid membranes: Tilt-curvature coupling and curvature gradient. Phys. Rev. E. 102, 042406.

    Article  CAS  PubMed  Google Scholar 

  29. Evans E., Rawicz W. 1990. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 2094.

    Article  CAS  PubMed  Google Scholar 

  30. Pan J., Tristram-Nagle S., Nagle J.F. 2009. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E. 80, 021931.

    Article  CAS  Google Scholar 

  31. Baumgart T., Das S., Webb W.W., Jenkins J.T. 2005. Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89, 1067–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E.A. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Risselada H.J., Marrink S.J. 2008. The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA. 105, 17 367–17 372.

    Article  Google Scholar 

  34. Perlmutter J.D., Sachs J.N. 2011. Interleaflet interaction and asymmetry in phase separated lipid bilayers: Molecular dynamics simulations. J. Am. Chem. Soc. 133, 6563–6577.

    Article  CAS  PubMed  Google Scholar 

  35. Braganza L.F., Worcester D.L. 1986. Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry. 25, 7484–7488.

    Article  CAS  PubMed  Google Scholar 

  36. Scarlata S.F. 1991. Compression of lipid membranes as observed at varying membrane positions. Biophys. J. 60, 334–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terzi M.M., Deserno M., Nagle J.F. 2019. Mechanical properties of lipid bilayers: a note on the Poisson ratio. Soft Matter. 15, 9085–9092.

    Article  CAS  PubMed  Google Scholar 

  38. Kondrashov O.V., Galimzyanov T.R., Jiménez-Munguía I., Batishchev O.V., Akimov S.A. 2019. Membrane-mediated interaction of amphipathic peptides can be described by a one-dimensional approach. Phys. Rev. E. 99, 022401.

    Article  CAS  PubMed  Google Scholar 

  39. Galimzyanov T.R., Molotkovsky R.J., Kheyfets B.B., Akimov S.A. 2013. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations. JETP Lett. 96, 681–686.

    Article  CAS  Google Scholar 

  40. Ingólfsson H.I., Melo M.N., van Eerden F.J., Arnarez C., Lopez C.A., Wassenaar T.A., Periole X., de Vries A.H., Tieleman D.P., Marrink S.J. 2014. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14 554–14 559.

    Article  CAS  Google Scholar 

  41. Puff N., Watanabe C., Seigneuret M., Angelova M.I., Staneva G. 2014. Lo/Ld phase coexistence modulation induced by GM1. Biochim. Biophys. Acta. 1838, 2105–2114.

    Article  CAS  PubMed  Google Scholar 

  42. Feigenson G.W. 2009. Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim. Biophys. Acta. 1788, 47–52.

    Article  CAS  PubMed  Google Scholar 

  43. Panteleev P.V., Bolosov I.A., Balandin S.V., Ovchinnikova T.V. 2015. Structure and biological functions of β‑hairpin antimicrobial peptides. Acta Naturae. 7, 37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pérez-Peinado C., Dias S.A., Domingues M.M., Benfield A.H., Freire J.M., Rádis-Baptista G., Gaspar D., Castanho M.A.R.B., Craik D.J., Henriques S.T., Veiga A.S., Andreu D. 2018. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn (15–34), antimicrobial peptides from rattlesnake venom. J. Biol. Chem. 293, 1536–1549.

    Article  PubMed  Google Scholar 

  45. Staneva G., Chachaty C., Wolf C., Quinn P.J. 2010. Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith-Lemli-Opitz syndrome. J. Lip. Res. 51, 1810–1822.

    Article  CAS  Google Scholar 

  46. Smith D.W., Lemli L., Opitz J.M. 1964. A newly recognized syndrome of multiple congenital anomalies. J. Pediatr. 64, 210–217.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Pinigin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinigin, K.V., Galimzyanov, T.R. & Akimov, S.A. Interaction of Ordered Lipid Domains in the Presence of Amphipatic Peptides. Biochem. Moscow Suppl. Ser. A 15, 219–229 (2021). https://doi.org/10.1134/S1990747821030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747821030077

Keywords:

Navigation